
Functional Programming at
Facebook

Chris Piro, Eugene Letuchy
Commercial Users of Functional Programming (CUFP)
Edinburgh, Scotland
4 September 2009

1 Facebook and Chat

2 Chat architecture

3 Erlang strengths

4 Setbacks

5 What has worked

Agenda

Facebook

The Facebook Environment

The Facebook Environment

▪ The web site

▪ More than 250 million active users
▪ More than 3.5 billion minutes are spent on Facebook each day

The Facebook Environment

▪ The web site

▪ More than 250 million active users
▪ More than 3.5 billion minutes are spent on Facebook each day

▪ The engineering team

▪ Fast iteration: code gets out to production within a week
▪ Polyglot programming: interoperability with Thrift
▪ Practical: high-leverage tools win

Using FP at Facebook

Using FP at Facebook
▪ Erlang

▪ Chat backend (channel servers)
▪ Chat Jabber interface (ejabberd)
▪ AIM presence: a JSONP validator

Using FP at Facebook
▪ Erlang

▪ Chat backend (channel servers)
▪ Chat Jabber interface (ejabberd)
▪ AIM presence: a JSONP validator

▪ Haskell

▪ lex-pass: PHP parse transforms
▪ Lambdabot
▪ textbook: command line Facebook API client
▪ Thrift binding

Thrift

▪ An efficient, cross-language serialization and RPC framework

Thrift

▪ An efficient, cross-language serialization and RPC framework
▪ Write interoperable servers and clients

Thrift

▪ An efficient, cross-language serialization and RPC framework
▪ Write interoperable servers and clients
▪ Includes library and code generator for each language

Thrift

▪ An efficient, cross-language serialization and RPC framework
▪ Write interoperable servers and clients
▪ Includes library and code generator for each language
▪ Servers define interfaces with an IDL

Thrift

struct UserProfile {
 1: i32 uid,
 2: string name,
 3: string blurb
}

service UserStorage {
 void store(1: UserProfile user),
 UserProfile retrieve(1: i32 uid)
}

▪ An efficient, cross-language serialization and RPC framework
▪ Write interoperable servers and clients
▪ Includes library and code generator for each language
▪ Servers define interfaces with an IDL
▪ Many supported languages

Thrift

struct UserProfile {
 1: i32 uid,
 2: string name,
 3: string blurb
}

service UserStorage {
 void store(1: UserProfile user),
 UserProfile retrieve(1: i32 uid)
}

C++

C#

Erlang

Haskell

Java

Objective C

OCaml

Perl

PHP

Python

Ruby

Squeakr

HTML

XSD

Facebook Chat

Motivation

Motivation
Why does Facebook need Chat?

▪ Inbox, Wall, Comments are
asynchronous, slow

▪ Real-time conversation

▪ Unique advantages:

▪ List of friends for free

▪ Integrated Facebook content

▪ No install required

Timeline

Timeline

▪ Jan 2007: Chat prototyped at Hackathon

Timeline

▪ Jan 2007: Chat prototyped at Hackathon

▪ Fall 2007: Chat becomes a “real” project

▪ 4 engineers, 0.5 designer

Timeline

▪ Jan 2007: Chat prototyped at Hackathon

▪ Fall 2007: Chat becomes a “real” project

▪ 4 engineers, 0.5 designer

▪ Winter 2007-08: Code, code, code (learn Erlang)

Timeline

▪ Jan 2007: Chat prototyped at Hackathon

▪ Fall 2007: Chat becomes a “real” project

▪ 4 engineers, 0.5 designer

▪ Winter 2007-08: Code, code, code (learn Erlang)

▪ Feb 2008: “Dark launch” testing begins

▪ Simulates load on the Erlang servers ... they hold up

Timeline

▪ Jan 2007: Chat prototyped at Hackathon

▪ Fall 2007: Chat becomes a “real” project

▪ 4 engineers, 0.5 designer

▪ Winter 2007-08: Code, code, code (learn Erlang)

▪ Feb 2008: “Dark launch” testing begins

▪ Simulates load on the Erlang servers ... they hold up

▪ Apr 6, 2008: First user message sent:

Timeline

▪ Jan 2007: Chat prototyped at Hackathon

▪ Fall 2007: Chat becomes a “real” project

▪ 4 engineers, 0.5 designer

▪ Winter 2007-08: Code, code, code (learn Erlang)

▪ Feb 2008: “Dark launch” testing begins

▪ Simulates load on the Erlang servers ... they hold up

▪ Apr 6, 2008: First user message sent: “msn chat?”

Timeline

▪ Jan 2007: Chat prototyped at Hackathon

▪ Fall 2007: Chat becomes a “real” project

▪ 4 engineers, 0.5 designer

▪ Winter 2007-08: Code, code, code (learn Erlang)

▪ Feb 2008: “Dark launch” testing begins

▪ Simulates load on the Erlang servers ... they hold up

▪ Apr 6, 2008: First user message sent:

▪ Apr 23, 2008: 100% rollout (Facebook has 70M users at the time)

“msn chat?”

Chat today

Chat today

▪ 1+ billion user messages / day

▪ 10+ million active channels at peak

▪ 1+ GB traffic at peak

▪ 100+ channel machines

Chat today

▪ 1+ billion user messages / day

▪ 10+ million active channels at peak

▪ 1+ GB traffic at peak

▪ 100+ channel machines

▪ Work load has increased 10x
while machines not even 3x

Chat Architecture

Channel servers (Erlang)

Channel servers (Erlang)

Channel servers (Erlang)

Channel servers (Erlang)
Architectural overview

▪ Web, Jabber tiers authenticate, deliver messages

Channel servers (Erlang)
Architectural overview

▪ Web, Jabber tiers authenticate, deliver messages

▪ One message queue per user (channel)

Channel servers (Erlang)
Architectural overview

▪ Web, Jabber tiers authenticate, deliver messages

▪ One message queue per user (channel)

▪ Timing, idleness information

Channel servers (Erlang)
Architectural overview

▪ Web, Jabber tiers authenticate, deliver messages

▪ One message queue per user (channel)

▪ Timing, idleness information

▪ HTTP long poll to simulate push (Comet)

▪ Server replies when a message is ready

▪ One active request per browser tab

Channel servers (Erlang)
Architectural overview

▪ Web, Jabber tiers authenticate, deliver messages

▪ One message queue per user (channel)

▪ Timing, idleness information

▪ HTTP long poll to simulate push (Comet)

▪ Server replies when a message is ready

▪ One active request per browser tab

▪ User ID space partitioned statically (division of labor)

Channel servers (Erlang)
Architectural overview

▪ Web, Jabber tiers authenticate, deliver messages

▪ One message queue per user (channel)

▪ Timing, idleness information

▪ HTTP long poll to simulate push (Comet)

▪ Server replies when a message is ready

▪ One active request per browser tab

▪ User ID space partitioned statically (division of labor)

▪ Each partition served by a cluster of machines (availability)

Erlang strengths

Concurrency

Concurrency

▪ Cheap parallelism at massive scale

Concurrency

▪ Cheap parallelism at massive scale

▪ Simplifies modeling concurrent interactions

▪ Chat users are independent and concurrent
▪ Mapping onto traditional OS threads is unnatural

Concurrency

▪ Cheap parallelism at massive scale

▪ Simplifies modeling concurrent interactions

▪ Chat users are independent and concurrent
▪ Mapping onto traditional OS threads is unnatural

▪ Locality of reference

Concurrency

▪ Cheap parallelism at massive scale

▪ Simplifies modeling concurrent interactions

▪ Chat users are independent and concurrent
▪ Mapping onto traditional OS threads is unnatural

▪ Locality of reference

▪ Bonus: carries over to non-Erlang concurrent programming

Distribution

Distribution

▪ Connected network of nodes

Distribution

▪ Connected network of nodes

▪ Remote processes look like local processes

▪ Any node in a channel server cluster can route requests
▪ Naive load balancing

Distribution

▪ Connected network of nodes

▪ Remote processes look like local processes

▪ Any node in a channel server cluster can route requests
▪ Naive load balancing

▪ Distributed Erlang works out-of-the-box (all nodes are trusted)

Fault Isolation

Fault Isolation

▪ Bugs in the initial versions of Chat:

▪ Process leaks in the Thrift bindings
▪ Unintended multicasting of messages
▪ Bad return state for presence aggregators

Fault Isolation

▪ Bugs in the initial versions of Chat:

▪ Process leaks in the Thrift bindings
▪ Unintended multicasting of messages
▪ Bad return state for presence aggregators

▪ (Horrible) bugs don’t kill a mostly functional system:

▪ C/C++ segfault takes down the OS process and your server state
▪ Erlang badmatch takes down an Erlang process

▪ ... and notifies linked processes

Error logging (crash reports)

Error logging (crash reports)

▪ Any proc_lib-compliant process generates crash reports

Error logging (crash reports)

▪ Any proc_lib-compliant process generates crash reports

▪ Error reports can be handled out-of-band (not where generated)

Error logging (crash reports)

▪ Any proc_lib-compliant process generates crash reports

▪ Error reports can be handled out-of-band (not where generated)

▪ Stacktraces point the way to bugs (functional languages win big here)

Error logging (crash reports)

▪ Any proc_lib-compliant process generates crash reports

▪ Error reports can be handled out-of-band (not where generated)

▪ Stacktraces point the way to bugs (functional languages win big here)

▪ Writing error_log handlers is simple:

▪ gen_event behavior
▪ Allows for massaging of the crash and error messages (binaries!)
▪ Thrift client in the error log

Error logging (crash reports)

▪ Any proc_lib-compliant process generates crash reports

▪ Error reports can be handled out-of-band (not where generated)

▪ Stacktraces point the way to bugs (functional languages win big here)

▪ Writing error_log handlers is simple:

▪ gen_event behavior
▪ Allows for massaging of the crash and error messages (binaries!)
▪ Thrift client in the error log

▪ WARNING: excessive error logging can OOM the Erlang node!

Hot code swapping

Hot code swapping

▪ Restart-free upgrades are awesome (!)

▪ Pushing new functional code for Chat takes ~20 seconds
▪ No state is lost

Hot code swapping

▪ Restart-free upgrades are awesome (!)

▪ Pushing new functional code for Chat takes ~20 seconds
▪ No state is lost

▪ Test on a running system

Hot code swapping

▪ Restart-free upgrades are awesome (!)

▪ Pushing new functional code for Chat takes ~20 seconds
▪ No state is lost

▪ Test on a running system

▪ Provides a safety net ... rolling back bad code is easy

Hot code swapping

▪ Restart-free upgrades are awesome (!)

▪ Pushing new functional code for Chat takes ~20 seconds
▪ No state is lost

▪ Test on a running system

▪ Provides a safety net ... rolling back bad code is easy

▪ NOTE: we don’t use the OTP release/upgrade strategies

Monitoring and Error Recovery

Monitoring and Error Recovery

▪ Supervision hierarchies

▪ Organize (and control) processes
▪ Systematize restarts and error recovery
▪ Extended supervisor with a “directory” type

▪ one_for_one with string -> child pid map

Monitoring and Error Recovery

▪ Supervision hierarchies

▪ Organize (and control) processes
▪ Systematize restarts and error recovery
▪ Extended supervisor with a “directory” type

▪ one_for_one with string -> child pid map

▪ net_kernel (Distributed Erlang)

▪ sends nodedown, nodeup messages
▪ any process can subscribe

Monitoring and Error Recovery

▪ Supervision hierarchies

▪ Organize (and control) processes
▪ Systematize restarts and error recovery
▪ Extended supervisor with a “directory” type

▪ one_for_one with string -> child pid map

▪ net_kernel (Distributed Erlang)

▪ sends nodedown, nodeup messages
▪ any process can subscribe

▪ heart: monitors and restarts the OS process

Hibernation

Hibernation

▪ Drastically shrink memory usage with erlang:hibernate/3

▪ Throws away the call stack, minimizes heap
▪ Enters a wait state for new messages
▪ “Jumps” into a passed-in function for a received message

Hibernation

▪ Drastically shrink memory usage with erlang:hibernate/3

▪ Throws away the call stack, minimizes heap
▪ Enters a wait state for new messages
▪ “Jumps” into a passed-in function for a received message

▪ Perfect for a long-running, idling HTTP request handler

Hibernation

▪ Drastically shrink memory usage with erlang:hibernate/3

▪ Throws away the call stack, minimizes heap
▪ Enters a wait state for new messages
▪ “Jumps” into a passed-in function for a received message

▪ Perfect for a long-running, idling HTTP request handler

▪ But ... not compatible with gen_server:call (and gen_server:reply)

▪ gen_server:call has its own receive() loop
▪ hibernate() doesn’t support an explicit timeout
▪ gen_hibernate: a few hours and a look at gen.erl

hipe_bifs

hipe_bifs
Cheating single assignment

▪ Erlang is opinionated:

▪ Destructive assignment is hard because it should be

hipe_bifs
Cheating single assignment

▪ Erlang is opinionated:

▪ Destructive assignment is hard because it should be

▪ hipe_bifs:bytearray_*(): manipulate references to mutable arrays (!)

▪ Necessary for aggregating Chat users’ presence
▪ Same in-memory format as presence servers (C++)
▪ Don’t tell anyone!

Setbacks

“What’s Erlang?”

“What’s Erlang?”

▪ Lack of Erlang educational resources (at start of 2007)

▪ Few industry-focused English-language resources
▪ Few blogs (outside of Yariv’s and Joel Reymont’s)
▪ U.S. Erlang community limited in number and visibility

“What’s Erlang?”

▪ Lack of Erlang educational resources (at start of 2007)

▪ Few industry-focused English-language resources
▪ Few blogs (outside of Yariv’s and Joel Reymont’s)
▪ U.S. Erlang community limited in number and visibility

▪ Engineers are uncomfortable with FP

▪ Universities have very conservative curricula
▪ FP : academia, AI :: ‘normal programming’ : industry
▪ “If you want to succeed, learn C++ and Java”, not “use the right tool for

the job”
▪ Not similar to rest of the codebase, not hiring specifically for FP

Institutional pressures

Institutional pressures

▪ Hard to get others to join the effort

Institutional pressures

▪ Hard to get others to join the effort

▪ Can’t reuse specialized infrastructure

▪ PHP-, C++-centric tools
▪ Chat deploy process is a one-off

Institutional pressures

▪ Hard to get others to join the effort

▪ Can’t reuse specialized infrastructure

▪ PHP-, C++-centric tools
▪ Chat deploy process is a one-off

▪ Divides department into us vs. them

▪ We’re “the Erlang guys”
▪ Sole responsibility for fixing bugs
▪ Less time for us to evangelize and innovate elsewhere

Institutional pressures

▪ Hard to get others to join the effort

▪ Can’t reuse specialized infrastructure

▪ PHP-, C++-centric tools
▪ Chat deploy process is a one-off

▪ Divides department into us vs. them

▪ We’re “the Erlang guys”
▪ Sole responsibility for fixing bugs
▪ Less time for us to evangelize and innovate elsewhere

▪ (Seemingly) contrary to “move fast” value

What has worked

What has worked

What has worked

▪ Use FP from the beginning

What has worked

▪ Use FP from the beginning

▪ Outline language strengths, give evidence

What has worked

▪ Use FP from the beginning

▪ Outline language strengths, give evidence

▪ Internal tech talks

What has worked

▪ Use FP from the beginning

▪ Outline language strengths, give evidence

▪ Internal tech talks

▪ ICFP Programming Contest: give the FP people an excuse!

What has worked

▪ Use FP from the beginning

▪ Outline language strengths, give evidence

▪ Internal tech talks

▪ ICFP Programming Contest: give the FP people an excuse!

▪ Language independence with Thrift

What has worked

▪ Use FP from the beginning

▪ Outline language strengths, give evidence

▪ Internal tech talks

▪ ICFP Programming Contest: give the FP people an excuse!

▪ Language independence with Thrift

▪ “The right tool for the job”

(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

