
Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

The First Substantial
Line of Business Application

in F#

Alex Peake - TFC
Adam Granicz - IntelliFactory

Commercial Users of Functional Programming
CUFP 2009 – Edinburgh, Scotland

What this talk is about

What does TFC do?

What does IntelliFactory do?

Why F#?

What is MarketingPlatform?

What were some of the key issues faced during development?

How did F# make those issues easier to address? (will see some code here)

Project status

Future developments

Conclusions

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

What this talk is about

What does TFC do?

What does IntelliFactory do?

Why F#?

What is MarketingPlatform?

What were some of the key issues faced during development?

How did F# make those issues easier to address? (will see some code here)

Project status

Future developments

Conclusions

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

About TFC

Based in Silicon Valley, TFC helps marketers

increase their efficiency and their effectiveness

by providing MarketingPlatform™ , a comprehensive marketing technology suite

that integrates marketing activities across the full marketing cycle.

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

These logos are registered trademarks of Microsoft Corporation.

What this talk is about

What does TFC do?

What does IntelliFactory do?

Why F#?

What is MarketingPlatform?

What were some of the key issues faced during development?

How did F# make those issues easier to address? (will see some code here)

Project status

Future developments

Conclusions

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

About IntelliFactory

IntelliFactory offers enterprise-grade F# development and training services, and a

suite of functional web development tools.

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

These logos are registered trademarks of Microsoft Corporation.

About IntelliFactory

At IntelliFactory, we specialize in:

o Building robust .NET applications in F#

o Migrating to and extending legacy .NET applications in F#

o Customer-friendly, agile management of software development projects

o F# trainings, from basic to advanced, from individual to enterprise-wide

o Designing and implementing domain-specific languages

o Building tools for functional web application development

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

IntelliFactory – in a nutshell

At IntelliFactory, we firmly believe in:

o Expertise: constantly seeking to push the limits and apply FP to the fullest

o Diversity: we bring talents from all around the world; currently we have

staff from Hungary, USA, Sweden, Ukraine, Colombia.

o Solid academic and FP professional background

o Bridging academia and industry -

o Interns – EPFL, Caltech, EPITA, Eafit

o Sponsorship – Central European Summer School in FP (CEFP 2009)

o Industry partners – Microsoft, local and multi-national firms

o A challenging place to work at – but with lots of freedom

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

What this talk is about

What does TFC do?

What does IntelliFactory do?

Why F#?

What is MarketingPlatform?

What were some of the key issues faced during development?

How did F# make those issues easier to address? (will see some code here)

Project status

Future developments

Conclusions

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

F#

o Is a functional programming language developed by Microsoft

o Is an ideal vehicle for rapid and robust software development

o Packs more functionality in less code

o Yields code that is easier to extend and maintain

o Is a standard front-end in Visual Studio

o Has full access to the .NET APIs and components

o Runs within the .NET CLR, making it possible to use within existing

.NET projects

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Why F#?

Key benefits:

o Application code is considerably shorter than in C#, Visual Basic or Java

o Dramatically reduces development time by providing better abstractions

o Ideal for a wide range of domains including finance, science and technology,

and those with heavy numerical and symbolic computation

o Language support for developing distributed, parallel, asynchronous and

reactive applications

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

What this talk is about

What does TFC do?

What does IntelliFactory do?

Why F#?

What is MarketingPlatform?

What were some of the key issues faced during development?

How did F# make those issues easier to address? (will see some code here)

Project status

Future developments

Conclusions

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

What is MarketingPlatform™?

TFC MarketingPlatform™ allows marketing folks to

Design and

Execute marketing campaigns,

Visualize and

Measure their effectiveness

It is deployed at numerous large organizations to drive marketing campaigns.

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Snippet- the Marketing Dashboard

Marketing Dashboard
KPIs

Response rate
Best customers
Age groups
Etc.

Campaign summaries
Team messages
Quick links/Favorites

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Key system features

TFC MarketingPlatform™ has a number of relevant features:

Managing contents and assets
Creating content and inventory
Managing contents and their properties and relationships
Uploading contents and related assets

Administering
Users and groups
Permissions
Categories (content, list, etc.)

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Key system features

Campaign / Wave Designer
Selecting the contents of the campaign wave
Identifying the target audience
Customizing and previewing wave contents
Selecting deployment type
Payment

List Management
Create lists based on rules
Create lists based on pivot selection  from analysis data
Upload fixed lists

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Related system components

Payment subsystem

Triggering subsystem – service application

Rendering wave contents – service application

Managing the printing of marketing material – thick client on Windows

Shipping subsystem – administration of shipments, service application

Data loading – processing raw customer feeds, service application

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

What this talk is about

What does TFC do?

What does IntelliFactory do?

Why F#?

What is MarketingPlatform?

What were some of the key issues faced during development?

How did F# make those issues easier to address? (will see some code here)

Project status

Future developments

Conclusions

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Some implementation issues

How can we speed up data access?

How do we deal with the huge amounts of information from the data cube?

How can we isolate implementation from various revisions to the data schema?

How can we allow administrator users to fine tune application logic?

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

What this talk is about

What does TFC do?

What does IntelliFactory do?

Why F#?

What is MarketingPlatform?

What were some of the key issues faced during development?

How did F# make those issues easier to address? (will see some code here)

Project status

Future developments

Conclusions

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

F# at work – a few examples

Memoization
To reduce database load where data is constant (following named FKs)

Active patterns
To form a conceptual layer on the top of the O/R mapping

Lazy computation (sequences)
To build and traverse large prospect lists
To save memory on computed sequences  compute on demand

Domain-specific languages
To express rule-based lists
To express triggering rules

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Database interaction

Each deployed instance comes with a predefined and potentially different set of
seed data for the key entities of the application. These entities are intertwined
with the rest of the entities.

We use Linq to perform the O/R mapping  lends itself for functional-style data
querying and manipulation.

F# allows to easily:

1. Build an abstraction around memoization
2. Use it for notable pieces of database data
3. Erect a conceptual layer around entities and their properties
4. Write code using the conceptual layer

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Memoization

1. Building an abstraction around memoization

type DataMap<'a, 'b> =

abstract Item : 'a -> 'b with get

abstract Clear : unit -> unit

abstract Invalidate : 'a -> unit

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Memoization

1. Building an abstraction around memoization

let Memoize f =

let internalTable = new Dictionary<_, _>()

{ new DataMap<_, _> with

member self.Item

with get (n) =

lock internalTable (fun () ->

if internalTable.ContainsKey n then

internalTable.[n]

else

let v = f n

internalTable.Add(n, v)

v)

...

}

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Memoization

2. Using memoization for notable pieces of database data

module WorkflowStatus =

let private workflowStatuses =

Data.Memoize (fun s ->

let db = Db.NewDbContext_MP ()

try

query <@ seq { for wt in db.WorkflowStatus do

if wt.Title = s then

yield wt.WorkflowStatusId } @>

|> Seq.hd

with

| _ ->

failwithf "Can not find workflow status [%s]" s)

module ID =

let Initiated () = workflowStatuses.["Initiated"]

let Approved () = workflowStatuses.["Approved"]

let Denied () = workflowStatuses.["Denied"]

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Active patterns

3. Erecting a conceptual layer around entities and their properties

module WorkflowStatus =

let (|Initiated|Approved|Denied|Unknown|) (ws: WorkflowStatus) =

if ws.WorkflowStatusId = States.WorkflowStatus.ID.Initiated() then

Initiated

elif ws.WorkflowStatusId = States.WorkflowStatus.ID.Approved() then

Approved

elif ws.WorkflowStatusId = States.WorkflowStatus.ID.Denied() then

Denied

else

Unknown

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Active patterns

4. Writing code using the conceptual layer

let w = CampaignWave.FindById (db, waveId)

// Does the wave have an approval record?

match w with

| Model.CampaignWave.Approval.Some aw ->

match aw.WorkflowStatus with

| Model.WorkflowStatus.Initiated ->

"Awaiting Approval"

| Model.WorkflowStatus.Approved ->

statusByRTQ personId w

| Model.WorkflowStatus.Denied ->

"Approval Denied"

| Model.WorkflowStatus.Unknown ->

...

// Wave has no approval record

| Model.CampaignWave.Approval.None ->

...

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Results

Dramatic speed improvements for reading/writing database data (from seconds down
to a fraction of a second for constructing and saving a large network of data)

Original code converted shortened and became much easier to work with, and it
became independent of schema changes  these showed up as compiler errors.

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Lazy computation

Building and traversing prospect lists

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Marketing
Platform DBData

Mart

A sequence of raw cube data transformed into XML on the fly
and streamed to the relational database.

Usage of traditional .NET streaming (provides buffering) and
lazy computed sequences (provides a nice conceptual model
to work with).

DB

Lazy computation

Building values by traversing and processing streams/sequences of data.

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

A natural way to deal with sequences of raw data, group
pieces together to build information packages.

Domain-specific languages

Building rule-based lists
How can we identify prospects?

Building triggering rules
When do we execute waves?

Cost calculation
How much do waves cost?

Implementation via
FsLex/FsYacc – efficient but slower to implement
Active patterns – relatively efficient but a breeze to develop

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

More F# help

Units of measure

Quotations to model embedded DSLs
Allows to express alternative execution mechanisms

Computation expressions to manipulate stateful objects
Build asynchronous computation

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

What this talk is about

What does TFC do?

What does IntelliFactory do?

Why F#?

What is MarketingPlatform?

What were some of the key issues faced during development?

How did F# make those issues easier to address? (will see some code here)

Project status

Future developments

Conclusions

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Project status

Main application and a number of related subsystems (triggering, rendering,
shipping, etc.) developed and delivered.

Has been deployed to a number of TFC customers and largely replaced the
legacy application that existed before.

New development taking place to accommodate new customers.

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

What this talk is about

What does TFC do?

What does IntelliFactory do?

Why F#?

What is MarketingPlatform?

What were some of the key issues faced during development?

How did F# make those issues easier to address? (will see some code here)

Project status

Future developments

Conclusions

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Further developments

More UI enhancements

Internationalization – Spanish and French version

Further backend system integration – feedback source, exact wave status, etc.

New feature requests from existing customers

Exploiting functional web development

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

What this talk is about

What does TFC do?

What does IntelliFactory do?

Why F#?

What is MarketingPlatform?

What were some of the key issues faced during development?

How did F# make those issues easier to address? (will see some code here)

Project status

Future developments

Conclusions

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Conclusions

Functional programming makes it easier to develop enterprise applications by giving
quick, concise and elegant solutions to real and complex problems

F# is a great language to prototype features and to write robust code

F# interoperates with other .NET languages seamlessly, so using the right language
for the right task is straightforward.

ASP.NET as a technology benefits little from F# and functional programming
 a better, different, and functional approach is needed

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Conclusions

Selling FP to commercial people needs a mindset that doesn’t ignore the realities
of developing software.

What NOT to say:

“FP is a whole different way to think about problems and develop code, and it
requires a new foundation to build applications.”

What works:

“FP allows to take what you have and extend it much quicker with new
functionality.”

 Needs the appropriate development platform  F# is a great choice

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

What this talk is about

What does TFC do?

What does IntelliFactory do?

Why F#?

What is MarketingPlatform?

What were some of the key issues faced during development?

How did F# make those issues easier to address? (will see some code here)

Project status

Future developments

Conclusions

Taking it further

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Our offering for web development

View applications as primarily client-based
Avoid state issues on server, no scaling issues

Write code in F# - no more HTML/CSS, JavaScript, etc.
Type-safe, statically checked code that is guaranteed to run
No more runtime errors
Much shorter implementation time and code
Pagelets compose into larger pagelets/pages
Formlets compose forms programmatically and take their typed data

Mark functions that are client-based
Get those automatically translated to JavaScript
Pagelet dependencies are managed

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

The IntelliFactory WebSharper™ Platform

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Copyright © 2004-2009 IntelliFactory http://www.intellifactory.com

Available soon at:

http://www.intellifactory.com

