erlang at hover.in
5 Choices to rule them all

Bhasker V Kode
co-founder & CTO at hover.in

at Commercial Users of Functional Programming 2009,
Edinburgh
September 4th, 2009 http://developers.hover.in

#1. serial vs parallel

v

'ﬂ"

v
-

' (\\“‘ \ N

HarndiSabing

http://developers.hover.in

“The domino effect is a chain reaction
that occurs when a small change
causes a similar change nearby, which
then will cause another similar change.”

via wikipedia page on Domino Effect

http://developers.hover.in

small change causes a similar
change nearby

similiar change causes
another similar change.

domino effect 1s a chain

reaction caused by a small
change.

http://developers.hover.in

% Or functionally speaking in erlang!
small change(Changes)->
similar change(Changes).

similiar change([NearBy|Rest])->
chain reaction(NearBy),

similar change(Rest);

similiar change([]) ->
“domino effect”.

chain reaction(NearBy)->
14 WOW ”n .

http://developers.hover.in

wrt flowcontrol...

* great to handle both bursts or silent traffic & to
determine bottlenecks.(eg ur own,rabbitmqg,etc)

* egl: when we addjobs to the queue, if it takes
greater than X consistently we move it to high
traffic bracket, do things differently, possibly
add workers or ignore based on the task.

* eg2: amazon shopping carts, are known to be
extra resilient to write failures, (dont mind
multiple versions of them over time)

http://developers.hover.in

wrt parallel computing...

Two independent parts

Original process

B 5x faster

A 2x faster

“the small portions of the program which cannot be
parallelized will limit the overall speed-up available ”
- slLaw ?

http://developers.hover.in

wrt parallel computing...

Two independent parts

Original process

Make B 5x faster

Make A 2Zx faster

“the small portions of the program which cannot be
parallelized will limit the overall speed-up available ”
- Amdahl's Law

http://developers.hover.in

Two independent parts A B

e B 5xfaster [

A 2x faster

A's and B's that we've faced at hover.in :
* url hit counters (B), priority queue based crawling(A)
* writes to create index (B), search's to create inverted
iIndex (A)
* dumping text files (B), loading them to backend (A)
* all » shared one common method to boost
performance — seperate flowcontrols for A,B

http://developers.hover.in

Two independent parts

Original process

Make B 5x faster

'
Make A 2Z2x faster

Further , A & B need'nt be serial, but a batch of A's & a parallel
batch of B's running tasks serially. Flowcontrol implemented by
tail-recursive servers handling bursty AND slow traffic well.

flowcontrol 1 flowcontrol 2

where - 1S

free cpu / time for

B .00 oxB
N

http://developers.hover.in

#2. distributed vs local

foxspain. 2000

http://developers.hover.in

in this uber-cool demo, | “nodel” split this trivial task to
the other 1000 nodes. this will be done in no time. Ha!

Node1

Node? Node3 ENIENIENIENIENIE NodeN

http://developers.hover.in

in this uber-cool demo, | “node2” ALSO split this trivial
task to the other 1000 nodes. Hal

Node1

Node2

ENIENIENIENIENIN NodeN

in this uber-cool demo, | “nodeN” ALSO split this trivial
task to the other 1000 nodes. Ha!

http://developers.hover.in

in other words...

* will none of the other N nodes behave as a master?
* won't most your calls be rpc if several nodes try to
be masters and ping every other node ?
* would you prefer a distributed non-master setup?
* would you rather load-balance the jobs where each
node does what it must do, and does only those jobs (
unless failover)
* would you prefer send the task where the data is ,
rather than one master node accessing all ?

* all personal choices at the end of the day...

http://developers.hover.in

how It works at hover.in:

I, “node X” will rather do tasks locally since this data is
designated to me, rather than rpc'ing all over like crazy |
The meta-data of which node does what calculated by
(a) statically assigned (our choice) (b) or a hash fn

(c) dynamically reassigned (maybe later)

which is made available to nodes by

(a) replication or (b) location transparency (our choice)

Node1 Node2 THINILNILNTI ™ NodeN

http://developers.hover.in

#3. replication vs location
transparency

http://developers.hover.in

some guestons ...
1. replicated on nodes defined by hash function /

consistent hashing,etc or statically assigned ?

2. data served from in-memory or completely from disk
or a combination of both (LRU cache, etc)?

3. are some instances dedicated readers / writers

4. transactions or no transactions

fortunately erlang/otp/mnesia makes it easy to make
highly granular decissions

5. bulk load the data or not (based on your
requirements , testing, preferences)

6. run mapreduce / fold over data ? (js in couchdb, or
lua with tokyocabinet)

http://developers.hover.in

#4. persistent data vs cyclic queues

more

Edit Options

http://developers.hover.in

to persist or not to persist...

* fixed length stores OR round-robin databases OR
cyclic queues are an attractive option « MW

* great for recission , cutting costs ! just overwrite data
* speedier search's with predictable processing times!
* more realtime, since data flushed based on FIFO

* but risky if you don't have sufficient data

* but pro's mostly outdo cons!

* easy to store/distribute as in-memory data structures
* useful for more buzz-analytics, trend detection, etc
that works real-time with less overheads

http://developers.hover.in

#5. In-memory vs disk

http://developers.hover.in

iIn-memory is the new embedded

* servers as of '09 typically have 4 - 32 GB RAM

* several companies adding loads of nodes for
primarily in-memory operations, caching, etc

* caching systems avoid disk/db , for temporal
processing tasks makes sense

* usage of in-memory data structures at hover.in :

— In-memory caching system , sets

— LRU cache's, trending topics , debugging, etc

http://developers.hover.in

hi_cache worker

* a circular queue implemented via gen_server

* set (ID , Key, Value , OptionsList)

Options are {purge, <true| false>}
size , <integer> }
set callback , <Function> }
delete callback , <Function> }
get_callback , <Function> }

{ timeout, <int>, <Function> }

ID is usually a siteid or “global”

{
{
{
{

http://developers.hover.in

* C = hi_cache_ worker,
C:set (User1, “recent_saved”, Value)
C:set (“global”, “recent_hits” , Value
[{size,1000}])

C:get (“global”,’recent_voted”)
C:get (User1,’recenthits”)
C:get (User1,’recent_cron_times”)

* (Note: initially used in debugging internally ->
then reporting -> next in public community stats)

http://developers.hover.in

/ rules of in-memory capacity planning

1) shard thy data to make it sufficiently un-related
2) implementing flowcontrol

(1)
(2)
(3) all data is important, but some less important
(4) time spent x RAM utilization = a constant

(5)

5) before every succesful persistent write & after
every succesful persistent read is an in-memory one

(6) know thy RAM, trial/error to find ideal dataload

(7) what cannot be measured cannot be improved

http://developers.hover.in

> hover.in founded late 2007
> the web ~ 10- 20 years old
> humans 100's of thousands of years

> but bacteria.... around for millions of years
... S0 this talk is going to be about what we can
learn from bacteria, the brain, and memory in
a concurrent world followed by hover.in's erlang
setup and lessons learnt

http://developers.hover.in

some traits of bacteria

* each bacteria cell spawns its own proteins

* All bacteria have some sort of some presence
& replies associated, (asynchronous comm.)

* group dynamics exhibits 'list fold"ish operation

* only when the Accumulator is > some guard
clause, will group-dynamics of making light
(bioluminiscence) work (eg: in deep sea)

http://developers.hover.in

supervisors, workers

* as bacteria grow, they split into two. when
muscle tears, it knows exactly what to replace.

* erlang supervisors can decide restart policies: if
one worker fails, restart all or if one worker
fails, restart just that worker, more tweaks.

* can spawn multiple workers on the fly, much
like the need for launching a new ec2 instant

http://developers.hover.in

supervisors, workers

* as bacteria grow, they split into two. when
muscle tears, it knows exactly what to replace.

* erlang supervisors can decide restart policies: if
one worker fails, restart all or if one worker
fails, restart just that worker, more tweaks.

* can spawn multiple workers on the fly, much
like the need for launching a new ec2 instant

http://developers.hover.in

Inter-species communication

* if you look at your skin — consists of very many
different species, but all bacteria found to
communicate using one common chemical

language.

http://developers.hover.in

Inter-species communication

iIf you look at your skin — consists of very many
different species, but all bacteria found to
communicate using one common chemical
language.
hmmmmmmmmmmmmmmmmmmm..............
....serialization ?!

....a common protein interpretor ?!

....0r perhaps just-in-time protein compilation?!

http://developers.hover.in

Interspecies comm. in practice

> attempts at serialization , cross language
communication include:

> thrift (by facebook)
> protocol buffers (by google)

> en/decoding , port based communication (erlang<-
>python at hover.in)

> rabbitMQ shows speeds of several thousands of
msgs/sec between python <-> erlang (by using...?)

http://developers.hover.in

talking about scaling

The brain of the worker honeybee weighs about
1mg (~ 950,000 neurons)

* Flies acrobatically , recognizes patterns,
navigates , communicates, etc

* Energy consumption: 10-15 J/op, at least 106
more efficient than digital silicon neurons

http://developers.hover.in

the human brain

100 billion neurons, stores ~100 TB

Differential analysis e.g., we compute color
Multiple inputs: sight, sound, taste, smell, touch
Facial recognition subcircuits, peripheral vision

iIn essence - the left & right brain vary in:
left -> persistent disk , handles past/future
right -> temporal caches! , handles present

http://developers.hover.in

summary of tech at hover.in
* LYME stack since ~dec 07 , 4 nodes (64-bit 4GB)

* python crawler, associated NLP parsers, index's
now in tokyo cabinet , inverted index's in erlang 's
mnesia db,cpu time-splicing algo's for cron's app,
priority queue's for heat-seeking algo's app,
flowcontrol, caching, pagination apps, remote node
debugger, cyclic queue workers, headless-firefox
for thumbnails

* touched 1 million hovers/month in May'09 after
launching closed beta to publishers in Jan 09

http://developers.hover.in

brief introduction to hover.in

choose words from your blog, & decide what content / ad

you want when you hover™ over it
* or other events like click,right click,etc

or...
the worlds first user-engagement

platform for brands via in-text broadcasting
or

lets web publishers push client-side event handling to the
cloud, to run various rich applications called hoverlets

demo at and
more at

http://developers.hover.in

http://start.hover.in/
http://hover.in/demo
http://hover.in/
http://developers.hover.in/blog/

summary of our erlang modules

rewrites.erl error.erl frag_mnesia.erl hi_api_response.erl hi_appmods_api_user.erl
hi_cache_app.erl, hi_cache_sup.erl hoverlingo.erl hi_cache worker.erl
hi_lru_worker.erl hi_classes.erl hi_community.erl
hi_cron_hoverletupdater_app.erl hi_cron_hoverletupdater.erl
hi_cron_hoverletupdater_sup.erl hi_cron_kwebucket.erl hi_cron_kweload.erl
hi_crypto.erl hi_daily_stats.erl hi_flowcontrol _hoverletupdater.erl
hi_htmlutils_site.erl hi_hybridq_app.erl hi_hybridg_sup.erl hi_hybridg_worker.erl
hi_login.erl hi_mailer.erl hi_messaging_app.erl hi_messaging_sup.erl
hi_messaging_worker.erl hi_mgr_crawler.erl hi_mgr_db_console.erl
hi_mgr_db.erl hi_mgr_db_mnesia.erl hi_mgr_hoverlet.erl hi_mgr_kw.erl
hi_mgr_node.erl hi_mgr_thumbs.erl hi_mgr_traffic.erl hi_nlp.erl hi_normalizer.erl
hi_pagination_app.erl hi_pagination_sup.erl, hi_pagination_worker.erl
hi_pmap.erl hi_register_app.erl hi_register.erl, hi_register_sup.erl,
hi_register_worker.erl hi_render_hoverlet_worker.erl hi_rrd.erl , hi_rrd_worker.erl
hi_settings.erl hi_sid.erl hi_site.erl hi_stat.erl hi_stats_distribution.erl
hi_stats_overview.erl hi_str.erl hi_trees.erl hi_utf8.erl hi_yaws.erl

& medici src (erlang tokyo cabinet / tyrant client) http://developers.hover.in

thank you

http://developers.hover.in

references

All images courtesy Creative Commons-licensed content for
commercial use, adaptation, modification or building upon from Flickr

, Wikipedia articles on Parallel computing
amazing brain-related talks at ,
go read more about the brain, and hack on erlang NOW!
shoutout to everyone at #erlang !

get in touch with us on our dev blog , ON
twitter @hoverin, or mail me at kode at hover dot in.

http://developers.hover.in

http://erlang.org/
http://ted.com/
http://developers.hover.in/

