

The Big Board.The Big Board.

Jeff HeardJeff Heard
The Renaissance Computing InstituteThe Renaissance Computing Institute

jeff@renci.orgjeff@renci.org
http://vis.renci.org/jeffhttp://vis.renci.org/jeff

mailto:jeff@renci.org

The problem.
● Disasters don't obey state or county

lines nor resource constraints.
● Thus resources for one disaster need

to be coordinated effectively across
boundaries.

● EMs need a geographically
coordinated shared workspace.

● Most natural shared workspace is a
map.

Existing Solutions.
● Google Maps / Earth

– Content is static

● ArcInfo
– Solutions are difficult to integrate

● WebEOC
– Non georeferenced

● Pen and Paper
– Need I really say more?

The Big Board.
● Teleconferencing over maps
● Realtime content creation and

generation
● Orthophotography or vector layers
● 100% Haskell with Python server-side.
● Directly uses Hieroglyph, buster, haxr

(xml-rpc), mtl (applicative), gtk2hs,
parsec, HTTP 4000.x, bytestring.

Why Haskell?
● Memory and speed efficient

executables.
● Excellent graphics libraries.
● Reliability through type-safety.
● Rapid development.
● High level of code reuse.

FP vs. Traditional vis.
● Visual Semantics

– Visual meaning vs. data and purpose of
application.

● Abstracts away from process of
drawing.

● Ties visual representation to data
closely.

Interactivity via FRP.
● Functional Reactive Programming

models interactivity via behaviours
and events.

● Behaviours react to events.
● Buster, TBB's FRP system is a

broadcast FRP as opposed to an arrow-
based FRP.

Postmortem.
● The Big Board:

– Less than 1000 lines of app-specific code.

● Two libraries, plus the beginnings of a
third.
– Hieroglyph for pure-functional vis

graphics.
– Buster for “app-orchestration”
– Beginnings of GIS library for parsing WKT,

WKB, PROJ, and interfacing with libproj2

Advantages of FP.
● Rapid development.
● Encouragement of reuse and small

understandable codebase.
● High performance compared to other

high-level languages.
● Active and responsive dev community

on #haskell and [Haskell-cafe].

Disadvantages of FP.
● Relatively small dev community,
● Dev community overlap with the

graphics community is not yet all that
large.

● Much of FP is still theory-focused.
● Few colleagues at my office

understand FP or think they have time
to learn.

Lessons Learned.
● Shortcuts are generally the long way

around.
● The type system should be used to

concentrate on semantics rather than
modularization.

● “pure” functions preferable to IO
functions, because it encourages
deeper thought about the problem.
More reuse, clearer code.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

