Buy a Feature
Adventure in Immutability
and Actors

David Pollak
CUFP September 26", 2008

1

Not strict, but pretty lazy
Lead developer for Lift web framework
Scala since November 2006, Ruby/Rails, Java/J2EE
Spreadsheet junky (writing more than using)
Paying work (all Lift based):
Enthiosys' Buy a Feature

SAP Community ESME project

About Buy a Feature
(online)
= The first of Enthiosys' online Innovation Games
= Serious Gaming for Agile Product Management

= Game Play:

= Create a list of product features with estimated costs

4-8 player buy features that they want

Motivate negotiations between players

= Learn how players sell each other on features

Buy a Feature

&P buy a feanure

T rarrmisisgg 1:5;::;:5

STOF OUF WG Improwved Dhatail ‘G My Lisia 3 Projesd Dashbosrd “3 Reg
Pagas Frai

HH-YLFFD

Tesiplayerzd #E
et piagar 51 f12 514
Tostphygar <1 $E L 311
Takl plagar a1 J1E 14
Trud plrgar B 1 $1 513
Tast plager 71 #E E 31
Trei papar B 1 Fiz 313
Tesiplypara1i 313 313
Tatals $120 5112 §1 53
Reamaining 55

- — o — - Salm
m Ky Lists =IMT&ILC MCATURE LIST

In this channel

Charnec! My List= skay ctarral Ted g 2

Nk in thie channed

Tar s 1 Seram’ Chan
Tos prarme 21 B nd
Tar: = wesm= 1 Sreamm’ Chal
Tar:@wen =1 Frear’ Chal
Tosi piarme A]
TI' Lrge ?1 I: IIII-I.I-.III
Ter s wea-31 Speam’ Chan
[T e SRt LTl

21
Lakcs3ids

Tend e 2 1 ¥ ammnln

Scala

Hybrid OO & Functional Language

Compiles to Java Byte-Code and runs fast on JVM

Benefits similar to those of F#

FP concepts including Actors and Immutablity
Lift

Concise, powerful web framework

Leverages Scala's functional features

Awesome Comet and AJAX support

Lift based Comet front-end

Ul state managed in Lift CometActors

All user interaction via JSON messages/events
Events sent to GameActor

GameActor folds GameBoard and writes events

GameActor sends GameBoard, etc. to CometActors

Actors - Why?

= Excellent concurrency management
= Event oriented

= Asynchronous

2 case EndGame =>
recordGameEnding()
this ! ChatMessage(Empty, timeNow,
"Game Ended", Empty, Empty)
eachListener(_ ! EndGame)

Actors - Where?

= Ul
= Pushes UI state changes out to browser
= Listen for incoming events/messages

= Cross-session Game managers

= Incoming events serialized
= Incoming events — New State

= New State — Listners (other Actors)

Anything that can change state 1s an Event
Events are timestamped and persisted in RDBMS

Events can be replayed through the system for TiVo
style game replay and pausing

Complementary to Actors

Events - Where?

Broswer — Server (CometActor)

CometActor — GameActor

GameActor — RDBMS

GameActor — Listners (mostly UI CometActor)

CometActor — Browser

Game Events are recalled, in order from RDBMS

Game Events are folded into GameBoard
events.foldLeft (game.startingGameBoard) {
case (gb, (ev, (ft, bid))) =>
gb.change(players(ev.theUser),
gamelInfo.features(ft),
bid, ev.when)}

GameBoard 1s queried for results

GameBoard 1s immutable, so a separate copy can be
associated with each Event

Thus, there's a freeze-frame at each event

Lift session bugs

Lots of stupid problems working around J2EE sessions

Why? I'm a moron
Parsing

Users entering free text — lots of unexpected input

Most of our tests are here
Post-processing
Didn't fold GameBoard, rolled my own, bad results J

Too many GameBoards in memory

o>

If you want me, you'll choose Lift
4 weeks of 'I could do this faster in Rails'

Included client on SVN checkins and rants turned to
questions (he's a Lisp and Smalltalk guy)

Then the first code went live
No questions since

SAP's interest in Lift are validating this choice

Allows for 'Exploration Driven Development' J

o>

Disbelief over code size

Attempts to dive below the abstractions
Java-like coding on the road to functional
Eventual adoption of map, fold, and filter

NPE: Thing of the past

Lack of tool support and examples 1n the wild are
speed bumps, especially with existing code

Need a team mentor to help with transition J

=

Amazing productivity for people once up FP curve

Very low defect rate

None of t

ne C

None of t

efects were concurrency re

ated!!

ne C

efects were concurrency re

ated!!

1

I

Very flexible system (added Flash front end 1n a

day)

End
http://buyafeature.com

= Questions?

Scala: Functions are Objects

= Objects can be passed as parameters

= Functions are syntactically easy to create
var name = “"”
SHtml.text (name, name =)

= They bind to variables/values (e.g. name)

1

Partial Functions

= PartialFunction[A,B] extends Functionl[A,B]
= 1sDefinedAt(x: A)

= Better known as pattern matching:
{

case Foo(bar) => bar
case Baz(dog) => dog

}

Composing Partial Function

= { case Foo(bar) => bar
case Baz(dog) => dog

} orElse { // compose
case Moo(cow) => cow
case Meow(cat) => cat

Extractors and Guards

= Extract data while matching other parts in a pattern:
{ case "“Foo” :: 1id :: Nil => doIt(id) }

= Guards:
{ case “Foo” :: 1d :: Nil
if isValid(id) && loggedIn ? =>
doIt(id) }

Remembering Functions

Functions are Objects

Map[String, String => XML]

Map[String, PartialFunction[String, XML]]
GET /ajax?OPAQUE ID=someValue
Map[OPAQUE ID] (someValue)

XML literals and
manipulation

= In Scala, XML 1s like String: supported at the

language level and immutable
<foo>{(1l to 10).
map(i => <val>{i}</val>)}</foo>

« (xml \ “val”).map(.text.tolInt).
.foldLeft(0)(_ +) == 55

1

Threadless, stackless units of execution

React to events and otherwise consume nothing but
memory

react(PartialFunction[Any, Any]) -

react {case Foo(bar) => doSomething(bar)
case Baz(dog) =>

doElse(dog) }

react(primaryHndlr orElse
secondaryHndler)

LiftRules.addDispatchBefore {
case RequestMatcher (
RequestState (
"showstates":: xs,),) =>

XmlServer.showStates(xs) }

def showStates(...) = XmlResponse(
<states renderedAt={timeNow.toString}>
</states>)

Lift and HTML forms

var name = “"

text (name, name =)

def setLocale(loc: String)
select (Locale.getAvailableLocales.toList
map(lo => (lo.toString,

lo.getDisplayName)),
setLocale)

AJAX elements are bound to functions:

a(() => {cnt = cnt + 1;
SetHtml ("cnt id", Text(cnt.toString))},
“click me”)
ajaxSelect(opts,
v => DisplayMessage("You selected "+v))

Lift CometActors

= Lift deals with all the plumbing:
def render = bind("time" -> timeSpan)
override def lowPriority = {
case Tick => reRender(false)

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

