Is Haskell ready
for everyday computing?

An informal experience report.

Jeft Polakow
CUFP 2008



Talk Overview

My background
Job background

System description
Points of interest

Conclusions



About Me

e Theoretical PL research
 Insecurity about utility of my work

e Desire to spread use of “good” languages



About My Job

Small credit trading group
Credit markets are opaque
Information management 1s main task

Quantitative analysis less important



Why Haskell?

e Because | can
— My chance to put theory 1nto practice
— Curious to know how Haskell fares

e Easiest way for me to be productive
— Usual typed, higher-order reasons
— Nicer syntax than OCaml



System Overview

Database and Web system
Scheduler to spawn autonomous tasks
Several communicating pieces

Distributed over several computers



System Architecture

database

User

HAppS

Scheduler

Master
data server

Slave
data server

Slave
data server

Slave
data server




First Version

. GHC 6.6.1 (started with GHC 6.4)
« Happ$ 0.8.4, HDBC 1.0.1 (using ODBC)
. All XP

e All process (not thread) based

— Issues with -threaded

* Somewhat primitive, but stable



Current Version

e GHC 6.8.3

e HAppS 0.9.2, HDBC 1.1.5 (using ODBC)

e XP and Linux

e Threads (where possible) and processes

e Nice machinery for logical processes and servers

 More autonomous pieces talking to each other



Novelties

 Statically typed tables with mini SQL DSL
— Manipulate tables in memory
— Generates SQL queries to create a table in memory

e Automatic generation of RPC wrappers
* Proc monad for logical process machinery

e Abstract (socket-based) server machinery



The Good

e Usual stuff

— Types & type classes for static guarantees
— First class (higher-order) functions for code reuse

e Purity
— Able to upgrade old (poorly documented) code with

relative ease

* Performance not an 1ssue (for our purposes)



The Bad

e Upgrading to 6.8.3 was painful
— Some libraries don't like XP
— Some libraries don't like cabal-install

* Errors / inadequacies of some libraries

e Most library documentation 1s poor



What is everyday computing?

My very subjective criteria.

 Database access tools
- HDBC, Takusen, etc...

 Web tools
- HAppS, powerful but difficult to install and learn
- HSP, WASH, etc...
— Curl bindings, FTP lib work pretty well

e Ability to write stable server-like programs
— Great lightweight threads support
— Good socket interface



What is everyday computing?

More very subjective criteria.

e Scripting
— ghci as a shell, HSH
— Good string processing machinery

e Foreign library interaction
— FFI, plus helper tools, are good
— No easy way to use .NET or Java libs

* Development Environment
— GHC 1s easy to install & low maintenance
— Libraries are not always easy to install
— Available IDEs not adequate for everyone



Is Haskell ready
for everyday computing?

Yes

 1f you are
— a seasoned Haskell programmer
— comfortable with laziness/strictness trade offs
— comfortable reading library source code
— capable of understanding and fixing linker errors

e and, 1f in a corporate environment, you are
— free to try drastically new things
— capable of functioning without IT dept support



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

