
Is Haskell ready
for everyday computing?

Jeff Polakow
CUFP 2008

An informal experience report.

Talk Overview

● My background
● Job background

● System description
● Points of interest

● Conclusions

About Me

● Theoretical PL research

● Insecurity about utility of my work

● Desire to spread use of “good” languages

About My Job

● Small credit trading group

● Credit markets are opaque

● Information management is main task

● Quantitative analysis less important

Why Haskell?

● Because I can
– My chance to put theory into practice
– Curious to know how Haskell fares

● Easiest way for me to be productive
– Usual typed, higher-order reasons
– Nicer syntax than OCaml

System Overview

● Database and Web system

● Scheduler to spawn autonomous tasks

● Several communicating pieces

● Distributed over several computers

System Architecture

HAppS

Scheduler

Master
data server

Slave
data server

Slave
data server

User

User

database

tasktask Slave
data server

task

First Version

● GHC 6.6.1 (started with GHC 6.4)

● HappS 0.8.4, HDBC 1.0.1 (using ODBC)

● All XP

● All process (not thread) based
– Issues with -threaded

● Somewhat primitive, but stable

Current Version

● GHC 6.8.3

● HAppS 0.9.2, HDBC 1.1.5 (using ODBC)

● XP and Linux

● Threads (where possible) and processes

● Nice machinery for logical processes and servers

● More autonomous pieces talking to each other

Novelties

● Statically typed tables with mini SQL DSL
– Manipulate tables in memory
– Generates SQL queries to create a table in memory

● Automatic generation of RPC wrappers

● Proc monad for logical process machinery

● Abstract (socket-based) server machinery

The Good

● Usual stuff
– Types & type classes for static guarantees
– First class (higher-order) functions for code reuse

● Purity
– Able to upgrade old (poorly documented) code with

relative ease

● Performance not an issue (for our purposes)

The Bad

● Upgrading to 6.8.3 was painful
– Some libraries don't like XP
– Some libraries don't like cabal-install

● Errors / inadequacies of some libraries

● Most library documentation is poor

What is everyday computing?

● Database access tools
– HDBC, Takusen, etc...

● Web tools
– HAppS, powerful but difficult to install and learn
– HSP, WASH, etc...
– Curl bindings, FTP lib work pretty well

● Ability to write stable server-like programs
– Great lightweight threads support
– Good socket interface

My very subjective criteria.

● Scripting
– ghci as a shell, HSH
– Good string processing machinery

● Foreign library interaction
– FFI, plus helper tools, are good
– No easy way to use .NET or Java libs

● Development Environment
– GHC is easy to install & low maintenance
– Libraries are not always easy to install
– Available IDEs not adequate for everyone

What is everyday computing?
More very subjective criteria.

● if you are
– a seasoned Haskell programmer
– comfortable with laziness/strictness trade offs
– comfortable reading library source code
– capable of understanding and fixing linker errors
– ...

● and, if in a corporate environment, you are
– free to try drastically new things
– capable of functioning without IT dept support

Yes

Is Haskell ready
for everyday computing?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

