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About Me

e Theoretical PL research
 Insecurity about utility of my work

e Desire to spread use of “good” languages



About My Job

Small credit trading group
Credit markets are opaque
Information management 1s main task

Quantitative analysis less important



Why Haskell?

e Because | can
— My chance to put theory 1nto practice
— Curious to know how Haskell fares

e Easiest way for me to be productive
— Usual typed, higher-order reasons
— Nicer syntax than OCaml



System Overview

Database and Web system
Scheduler to spawn autonomous tasks
Several communicating pieces

Distributed over several computers
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First Version

. GHC 6.6.1 (started with GHC 6.4)
« Happ$ 0.8.4, HDBC 1.0.1 (using ODBC)
. All XP

e All process (not thread) based

— Issues with -threaded

* Somewhat primitive, but stable



Current Version

e GHC 6.8.3

e HAppS 0.9.2, HDBC 1.1.5 (using ODBC)

e XP and Linux

e Threads (where possible) and processes

e Nice machinery for logical processes and servers

 More autonomous pieces talking to each other



Novelties

 Statically typed tables with mini SQL DSL
— Manipulate tables in memory
— Generates SQL queries to create a table in memory

e Automatic generation of RPC wrappers
* Proc monad for logical process machinery

e Abstract (socket-based) server machinery



The Good

e Usual stuff

— Types & type classes for static guarantees
— First class (higher-order) functions for code reuse

e Purity
— Able to upgrade old (poorly documented) code with

relative ease

* Performance not an 1ssue (for our purposes)



The Bad

e Upgrading to 6.8.3 was painful
— Some libraries don't like XP
— Some libraries don't like cabal-install

* Errors / inadequacies of some libraries

e Most library documentation 1s poor



What is everyday computing?

My very subjective criteria.

 Database access tools
- HDBC, Takusen, etc...

 Web tools
- HAppS, powerful but difficult to install and learn
- HSP, WASH, etc...
— Curl bindings, FTP lib work pretty well

e Ability to write stable server-like programs
— Great lightweight threads support
— Good socket interface



What is everyday computing?

More very subjective criteria.

e Scripting
— ghci as a shell, HSH
— Good string processing machinery

e Foreign library interaction
— FFI, plus helper tools, are good
— No easy way to use .NET or Java libs

* Development Environment
— GHC 1s easy to install & low maintenance
— Libraries are not always easy to install
— Available IDEs not adequate for everyone



Is Haskell ready
for everyday computing?

Yes

 1f you are
— a seasoned Haskell programmer
— comfortable with laziness/strictness trade offs
— comfortable reading library source code
— capable of understanding and fixing linker errors

e and, 1f in a corporate environment, you are
— free to try drastically new things
— capable of functioning without IT dept support
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