
From OCaml to Javascript
at Skydeck

jake.donham@skydeck.com

What is Skydeck?

a tool for managing your mobile phone

reads your mobile phone call log

presents it back to you in a useful way
attach people to phone numbers
view calls by person
when did I last call Steve?
who did I call yesterday?
etc.

Where does the data come from?

from your phone carrier's web site
you give Skydeck your credentials
we download bills and usage from carrier site

with a Firefox extension
with a standalone XULrunner app
from our servers (a farm of XULrunners)

via our web API

3rd party can add new data sources

Where does OCaml come into this?

most of our system is written in OCaml
bill parsing, web servers, etc.

but the web is Javascript

Mozilla apps are Javascript
Javascript is not my favorite programming language

too forgiving
heavy syntax for functional code

sad programmers

OCamljs

we wrote OCamljs
Javascript back-end for OCaml compiler

wrote our Mozilla app in OCaml

we are happy

Really?

match referer with
 | None -> r#send body
 | Some re ->
 (* see http://developer.mozilla.org/en/docs/Setting_HTTP_req ...
 let os = XPCOM.getService_observer_service () in
 let observe (s : #XPCOM.supports) _ _ =
 let hc = s#_QueryInterface XPCOM.httpChannel in
 if hc == r#_get_channel#_QueryInterface XPCOM.httpChannel
 then hc#setRequestHeader "Referer" re false in
 let observer = Ocamljs.obj [
 "observe", Ocamljs.jsfun3 observe
] in
 os#addObserver observer "http-on-modify-request" false;
 r#send body;
 os#removeObserver observer "http-on-modify-request";

Benefits of OCaml for downloader

types types types

can give types to the complicated Mozilla API

continuation passing style enforced by types

transparent RPC to server

tool support (Camlp4, ocamlbuild)

How does OCamljs work?

ocamlc compiles to "lambda" intermediate language

ocamljs translates lambda to Javascript

almost everything in the front-end comes for free
type checking
module system
Camlp4

objects not free

we want OCaml objects = JS objects

Example

OCaml:
 module Test =
 struct
 type foo = Bar of int | Baz of bool | Quux

 let f = function
 | Bar i -> "Bar " ^ string_of_int i
 | Baz b -> "Baz " ^ (if b then "true" else "false")
 | Quux -> "Quux"
 end

Example

Lambda:

(setglobal Test!
 (let
 (f/65
 (function param/73
 (switch* param/73
 case int 0: "Quux"
 case tag 0:
 (apply (field 15 (global Pervasives!)) "Bar "
 (apply (field 19 (global Pervasives!))
 (field 0 param/73)))
 case tag 1:
 (apply (field 15 (global Pervasives!)) "Baz "
 (if (field 0 param/73) "true" "false")))))
 (makeblock 0 f/65)))

 module Test =
 struct
 type foo = Bar of int | Baz of bool | Quux

 let f = function
 | Bar i -> "Bar " ^ string_of_int i
 | Baz b -> "Baz " ^ (if b then "true" else "false")
 | Quux -> "Quux"
 end

Example

Javascript:

var oc$Test$ =
 function () {
 var f$65 =
 _f(function (param$73) {
 if (typeof param$73 == "number")
 switch (param$73) { case 0: return "Quux"; default: return ...
 else
 switch ($t(param$73)) {
 case 0:
 return __(oc$Pervasives$[15],
 ["Bar ", _(oc$Pervasives$[19], [param$73[0]])]);
 case 1:
 return __(oc$Pervasives$[15],
 ["Baz ", param$73[0] ? "true" : "false"]);
 default: return null;}
 });
 return $(f$65);
 }();

(setglobal Test!
 (let
 (f/65
 (function param/73
 (switch* param/73
 case int 0: "Quux"
 case tag 0:
 (apply (field 15 (global Pervasives!)) "Bar "
 (apply (field 19 (global Pervasives!))
 (field 0 param/73)))
 case tag 1:
 (apply (field 15 (global Pervasives!)) "Baz "
 (if (field 0 param/73) "true" "false")))))
 (makeblock 0 f/65)))

Gory details

partial application / overapplication

tail recursion via trampolines

heap representation
block -> array + tag
int (nativeint, int32), float, char -> number
bool -> number, bool

since JS comparison ops return bool
string -> string, number array

support mutable strings

Interfacing with Javascript

with "external" like with C
naming convention for methods, accessors
special externals for raw Javascript

with object type
naming convention for accessors

OCamljs included libraries:

some Mozilla API
some built-in Javascript
OCaml stdlib

Work in progress

orpc for Javascript
orpc generates RPC code from OCaml signatures

works with Ocamlnet
Javascript backend passes heap rep

on client, just eval it
on server, must check that it's valid for type

jslib
Camlp4 parser, pretty-printer, quotations for JS

Future work / dreams

finish object support
write Javascript objects in OCaml

use jslib to support inline Javascript in OCaml code

improve performance

web programming

like Google Web Toolkit

Using OCaml at a startup

a good idea!

better tools let you work faster

static checking keeps you on course

you get a clean slate

you need to hire great people
OCaml is fun!

Thanks!

Skydeck is hiring
http://skydeck.com/jobs

http://code.google.com/p/ocamljs
http://code.google.com/p/orpc2

