From OCaml to Javascript
at Skydeck

jake.donham@skydeck.com

What is Skydeck?

e a tool for managing your mobile phone
e reads your mobile phone call log

e presents it back to you in a useful way
o attach people to phone numbers
o view calls by person
o when did | last call Steve?
o who did | call yesterday?
o efc.

Where does the data come from?

e from your phone carrier's web site
o you give Skydeck your credentials
o we download bills and usage from carrier site
m with a Firefox extension
m with a standalone XULrunner app
m from our servers (a farm of XULrunners)

e via our web API
o 3rd party can add new data sources

Where does OCaml come into this?

e most of our system is written in OCaml
o bill parsing, web servers, etc.

e but the web is Javascript
o Mozilla apps are Javascript
o Javascript is not my favorite programming language
m too forgiving
m heavy syntax for functional code

e sad programmers

OCamljs

e we wrote OCamljs
o Javascript back-end for OCaml compiler

e wrote our Mozilla app in OCaml|

e We are happy

Really?

match referer with
| None -> r#send body
| Some re —->
(* see http://developer.mozilla.org/en/docs/Setting HTTP req

let = XPCOM.getService observer service () 1n
let observe (s : #XPCOM.supports) = =
let = s# QuerylInterface XPCOM.httpChannel in
1f hc == r# get channel# QuerylInterface XPCOM.httpChannel
then hc#setRequestHeader re in
let = Ocamljs.obj [
, Ocamljs.jsfun3 observe
] in
os#addObserver observer :

r#send body;
os#removeObserver observer :

Benefits of OCaml for downloader

e types types types

e can give types to the complicated Mozilla API
e continuation passing style enforced by types
e transparent RPC to server

e tool support (Camip4, ocamlbuild)

How does OCamljs work?

e ocamlc compiles to "lambda” intermediate language
e ocamljs translates lambda to Javascript

e almost everything in the front-end comes for free
o type checking
o module system
o Camip4

e Objects not free
o we want OCaml objects = JS objects

Example

OCaml:

module Test =

struct
type foo = Bar of int | Baz of bool | Quux

let £ = function
| Bar 1 -> ” string of int 1
| Baz b -> ~ (1f b then else
| Quux ->

end

module Test =

struct
Example type foo = Bar of int | Baz of bool | Quux
let £ = function
| Bar 1 —-> » string of int 1
| Baz b -> ~ (1f b then else
| Quux ->
end

Lambda:

(setglobal Test!
(let
(£/65
(function param/73
(switch* param/73
case 1int O:
case tag O:
(apply (field 15 (global Pervasives!))
(apply (field 19 (global Pervasives!))
(field 0 param/73)))
case tag 1:
(apply (field 15 (global Pervasives!))
(if (field 0 param/73))))))
(makeblock 0 £/65)))

(setglobal Test!

Example

(let
(£/65
(function param/73
(switch* param/73
case int O:
case tag O0:
(apply (field 15 (global Pervasives!))
(apply (field 19 (global Pervasives!))

. . field 0 param/73)
Javascript: cose tan 1 T)
(apply (field 15 (global Pervasives!))
(1f (field 0 param/73))))))
var = (makeblock 0 f£/65)))
function () {
var =
_f(function (param$73) {
if (typeof ==)
switch (param$73) { case 0: return ; default: return
else
switch (St (param$73))
case 0:
return (ocSPervasivesS[15]7,
[o, __(ocSPervasives$[19], [param$S73[0]1]1)1);
case 1:
return (ocSPervasivesS$S[15],
[", param$73[0] ? 1) ;
default: return null;}

}) s
return $(£$65);

FO)S

Gory details

e partial application / overapplication
e tail recursion via trampolines

e heap representation
o block -> array + tag
o int (nativeint, int32), float, char -> number
o bool -> number, bool
m since JS comparison ops return bool
o string -> string, number array
m support mutable strings

Interfacing with Javascript

e with "external" like with C
o naming convention for methods, accessors
o special externals for raw Javascript

e with object type
o nhaming convention for accessors

e OCamljs included libraries:
o some Mozilla API
o some built-in Javascript
o OCaml stdlib

Work in progress

e orpc for Javascript
o orpc generates RPC code from OCaml signatures
m works with Ocaminet
o Javascript backend passes heap rep
m On client, just eval it
m on server, must check that it's valid for type

o jslib
o Camlp4 parser, pretty-printer, quotations for JS

Future work / dreams

e finish object support
o write Javascript objects in OCaml

e use jslib to support inline Javascript in OCaml code
e improve performance

e Web programming
o like Google Web Toolkit

Using OCaml at a startup

e a good idea!

e better tools let you work faster

e static checking keeps you on course
e you get a clean slate

e yOou need to hire great people
o OCaml is fun!

Thanks!

e Skydeck is hiring
o http://skydeck.com/jobs

e http://code.google.com/p/ocamljs
e http://code.google.com/p/orpc2

