(lnteIZap N

ling NeSL and SISAL in C++

Anwar Ghuloum

CLARA Group

Programming Systems Lab
Corporate Technology Group

© 2007 Intel Corporation

Agenda

®* Entering the Many-core Era
® Ct: A Bridge
® The Long Term Opportunity

Process Scaling Trends

Every process step :

® Shrinks linear dimension by 30%

® Capacitance shrinks by 30%

® Max voltage decreases by 10%

® Switching time (@Vmax) shrinks by 30%
- Frequency increases by ~40%

Transistor Scaling
~= 2X density
~= 50% less area

Power Scaling

~= transistors * cap/trans * voltage? * 1/time
~= 2 *%0.7 *0.92* 1/0.7
~= 1.62X power increase

uArch Features and Perf/Watt

W Area X

Moore’s Law = more transistors
O Perf X

for advanced architectures

w

N

Increase (X)

Pushed frequency beyond limit

—

Dramatically increased transistor
subthreshold leakage

o

—

Pipelined S-Scalar 000-Sp

m Power X Increased pipeline depth

EIMips/W (%)
Delivered higher peak
performance
But..
L1 L

‘

Increase (X)
o =

Pipelined S-Scalar 000-Spec DeepPi With lower power efficiency

Architecture is Power Limited

®* Power increasing ~50% each generation
- Perf/Watt is increasingly important

®* Power efficiency can be gained through:
- More, simpler cores
>Leverage increased density while decreasing per core power

- Longer vector ISA
>Reduced front-end power

- VLIW
>Expose ILP to compiler

All of these approaches expose parallelism to
software.

Example: An Acceleration in ISA Enhancement?

SIMD on |IA
200 1024
= #inst
160 + 144 —¢— data width (bits) | 768 E
120 e 2
L7 1 (=
= 75 19123
* 80+ 47 3
©
o
0 | | 0
g % PR, o
@“ N 7R\
N\ g %C.) %C.) %%% %%

What Software Vendors are Telling Us

®* Programming parallel applications is 10,100,1000x* /ess productive
than sequential

- Non-deterministic programming errors
- Performance tuning is extremely microarchitecture-dependent
* Parallel HW is here today, better programming tools are needed to
take advantage of these capabilities
- Quad core on desktop arrived nearly a year months ago
- Multi- and Many-core DP and MP machines are on the way
- (Also, programmable GPUs going on 8 years)
®* Strong interest by ISVs for a parallel programming model which is:
- Easy to use and high performance: sounds difficult already!

- Portable: Desire the flexibility to target various HW platforms and adapt
to future variations

“Lepends on wihich aeveloper you sk,

Our Approach(es)

As a chip company shipping multi-core CPUs, we
want to enable as many applications as possible

® As a company shipping multi-core CPUs today
(actually, the last couple of years), we need to
prioritize near term enabling

® As a chip company shipping many-core CPUs soon,
we need start working on a longer term solution

We are commercially using functional programming
ideas (in the near term) and languages (in the long
term) to enable a lot of parallel applications

Approach 1: A Bridging Model (e.g. Ct)

® Ease the transition to parallelism

®* Experiment with parallel programming idioms
® Based on existing prevalent languages

® “"Retrofit” useful features and semantics into the
language

®* (Focus of this talk)

Approach 2: Start Designing the Languages of the
Next Decade

®* Use wealth of experience with languages
®* Use experiences gained with approach 1

Strong intuition that one or more mainstream
languages will come from the PL community

(Stay tuned

Approach 1: Why Data Parallelism?

“Good” reasons

- Deterministic model
>Data races are designed out
>Behavior on 1 core is the same as behavior on n cores

Performance is predictable
>Simple model for each flavor of data parallel operator

High performance is achievable

Highly portable
>Threaded & SIMD architectures

Expressive
> Especially when application usage patterns considered

“Bad” reasons
- Bottom-up design: Architectural constraints

What is “Nested” Data Parallelism?

Flat data parallel models (e.g. APL, FO0/HPF, GPGPU)

- Flat (or limited dimensionality) vectors |Mo: Streaming & flat data
- Operators over vectors parallel are roughly equivalent
> Element-wise operators I EXPressiveness
> Limited collective communication operations (reductions)
> Some constrained permutation
> Masking operations

Nested data parallel models added (e.g. Nesl, APL2,
Paralations)

+ (Irreqularly) nested and sparse/indexed vectors

+ Extend all operators to work generically on various vector types
+ Richer set of collective communication operations
+Scans, Combining-send/Multi-reduce, Multi-prefix

intel)

Design Constraints (For a Bridging Model)

Target language: C/C++ (and maybe Fortran, Java, etc.)

® These are and will continue to be the dominant languages for
high performance computing for the next 5 years

...and we mean standard C and C++!
® Custom syntactic extensions face huge barriers to adoption

® [t is possible to design a desirable semantics through an API-
like interface with some Macro magic

...and all the “"baggage” that comes with those languages
® Must co-exist with legacy APIs, libraries

® Must co-exist with prevailing parallelism APIs (Pthreads,
winthreads, OpenMP, MPI)

intel)

Ctis...

...an “extension” of C++ for throughput computing
...like a library implementation of a STL-style
container

- A pure functional mini-language with call-by-value
semantics

...using a (dynamically linked) runtime to optimize
and generate code

...designed to forward-scale software

TVECs

The basic type in Ctisa TVEC
- TVECs are managed by the Ct runtime
- TVECs are single-assignment vectors
- TVECs are (opaquely) flat, multidimensional, sparse, or nested
- TVEC values are created & manipulated exclusively through Ct API

Declared TVECs are references to (immutable) values
TVEC<F64> DoubleVec; // DoubleVec can refer to any vector of doubles

BoubleVec = Srcl + Src2;

DoubleVec = Src3 * Srcé4;

Assigning a value to DoubleVec doesn’'t modify the value representing
the result of the add, it simply refers to a new value.

intel)

Ct Example: Sparse Matrix Vector Product

TVEC<F64> SparseMatrixVectorProductCSC(TVEC<F64> A, TVEC<I32> rind,
TVEC<I32> cols, TVEC<F64> v) {

// computes A*x, where A,rind,cols is a compressed sparse column vector
TVEC<F64> expv, product, result;

expv = v.distribute(cols); // replicates elements of v
product = A¥*expv; // performs inner product of A, v
product = product.applyNesting(rind,ctSparse); // make the product indexed
return product.reduceSum(); // performs row-wise reduction

// (implicitly a combining-send)

Ct compiler and runtime automatically take care of
threading and vector ISA

Productive Programming with Ct

TVEC<F64> smvpCSC(TVEC<F64> A, TVEC<I32> rind,

TVEC<I32> cols, TVEC<F64> v) {

- TVEC<F64> expv, product, result;
Ct: <6 |II‘I : expv = v.distribute(cols);
product = A*expv;
faste product = product.applyNesting(rind,

ctSparse);
return product.reduceSum();

}

e Race-free programming with on-the-fly, automatic
generation of threads tailored to user’'s multi-core
hardware

e Simpler, high performance, scalable, SSE-friendly
parallel code

e Library-like interface compatible with existing
programming environments and APIs

Code Comparison: Black-Scholes

template <typename T>
TVEC<T> CND(TVEC<T> x)
{
TVEC<T> | = abs(x);
TVEC<T> k = 1.0f / (1.0f + 0.2316419f * I);

TVEC<T>w =
0.31938153f * k -
0.356563782f “ k * k +
1.781477937f *k *k *k -
1.821255978f *k “k *k * k +
1.330274429f *k *k * k * k * k;

w =w *inv_sqrt_2xPl * exp(l * | * -0.5f);
w = select(x > 0, 1.0f - w, w);
return

template <typename T>
void ctBlackScholes(T *option_|
int num_options,
T *stkprice,
T *strike,
T *rate,
T *volatility,
T *time)

CT{
TVEC<T> s(stkprice, num_options);
TVEC<T> x(strike, num_options);
TVEC<T> r(rate, num_options);
TVEC<T> v(volatility, num_options);
TVEC<T> t(time, num_options);

TVEC<T> sqrt_value = v * sqrt(t);
TVEC<T>d1=In(s/x)+ (r+v*v*0.5f)*t)/sqrt_value;
TVEC<T> d2 = d1 - sqrt_value;

TVEC<T> result = x * exp(0f - r * t) * (1.0f - CND(d2)) + (-s) * (1.0 - CND(d1));
result.copyOut(option_price, num_options);

#define NCO 4

#if (NCO=:
#define fptype doubl
#define SIMD_WIDTH 2
Hdefine_MMR _m128d

#define _MM_LOAD _mm_load_pd
#define _MM_STORE _mm_store_pd
#define _MM_MUL _mm_mul_pd

#define _MM_ADD _mm_add_pd
#idefine _MM_SUB _mm_sub_pd
U Sl
#idefine _MM_SQRT _mm_sart_pt

#define _MM_SET(A) _mm_set MA A
#define _MM_SETR _mm_set_pd
Hendif

#if (NCO==4)

define fptype float
define SIMD_WIDTH 4
#idefine _MMR

#define _MM_SQRT _mm_sar

fideing “MM™SET() mr oL pa(AAAA)
#idefine _MM_SETR _mm_set_ps

Hendif

_forceinline void CNDF (fptype * OutputX. fptype * InputX)

_MM_ALIGN16 int sign[SIMD_WIDTH];

inti;

_MMR xinput;

_MMR xNPrimeofX;

_MM_ALIGN16 fptype expValues[SIMD_WIDTH];
IR xK2;

=
=

MMR xK2_2, xK2_3, xK2_4, xK2_5;
_MMR xLocal, xLocal_1, xLocal 2, xLocal_3;

for (10; i<SIMD_WIDTH; i++)
i Check for negative value of nputx
if (nputx(] < 0.0)

utx(;

sign|

Jelse
signfi] = 0;

Xinput =_MM_LOAD(InputX):;

11 Compute NPrimeX term common to both four & six decim:
accuracy cales
for (1=0; I<SIMD_WIDTH; i++
expValues(i] = exp(-0.51 * InputX(i] * Inputx[\])
I printi("exp(%d: %n", i, expValuesi);
}

XNErimeof = _MM_LOAD(wsVaues):
XNPrimeofX = _MM_MUL(NPrimeofX,
MM SET(n st 2P0

LR R MSE e 2516410, it
CMM_ADD(C, it SET(1pe)1.0
MM_DIV(_MM_SET(iptype)1.0), X
mm_rep_pd(xK2); I/ No rcp luncm:n mrduubls

MMLMULr, X2

MM_MUL(xK2_2, xK2)
MM_MUL(xK2.
MM_MUL(xK2_4, xK2);

MM_MUL(xK2, MM

D e e
pe * time, int * otype, floa timet)
(

inti;
local private working variables for the calculation

_MMR xVolatiity;
_MMR xTime;
_MMR xSaqriTime;

sy fplwe logValuesINCOJ;

_MM_ALIGN16 fptype d1[SIMD_WIDTH];
_MM_ALIGN16 fptype d2[SIMD_WIDTH]
_MM_ALIGN16 fptype FutureValueX(SIMD_WIDTH];
IM_ALIGN16 fptype NofXd1[SIMD_WIDTH]:
_MM_ALIGN16 fptype NofXd2[SIMD_WIDTH]:
_MM_ALIGN16 fptype NegNofXd1[SIMD_WIDTH];
_MM_ALIGN16 fptype NegNofXd2[SIMD_WIDTH]:

XStockPrice =_MM_LOAD(spiprice);
poisS e R A el

XRiskFreeRate AD(rate);
Volatity =_MM mAD(valaumy;

xTime =_MM_LOADtime);

xSartTime =_MM_SQRT(xTime);

for(i=0; i<SIMD_WIDTH;i
logValuesfl] = \og{spwnce[\] strikef);

_MM_ADD(xD1, xLogTerm):
_MM_ADD(xD2, xLogTerm);

MM_MUL(VOa, <SqTime)
M DIV(O1, x
VL 70115706, An optimizaton s ot o recompule x02, but o
derve L fom xD1
11XD2'=_MM_DIV(xD2, xDen)
_NIM_SUB(xD1, xDen);

_MM_STORE(d!, xD1);
_MM_STORE(d2, xD2);

CNDF(NofXdt, d1);
CNDF(NofXd2, 62);

for (i=0; I<SIMD_WIDTH; ©
FutureValuex[i] = smxem (exp((ratef)*(timefl)));

NegNofXd1i
NegNofXd2[i] = ((fptype)1.0 - (NofXd2[i)):
OptionPricefi] = (FutureValueX(i] * NegNofXd2i) -

(sptpriceli] * NegNofXd1[l);

}

}

(fptype)1.0 - (NofXdH[i):

i

xLocal 2= MM_MUL(xK2_2, _MM_SET(fptype)-
osseserea),
UL(xK:
MM SETWP'YPGM 78147793 i)
\DD(xLocal_2, xLocal_3):
MM MLIL(xKZ 4,_MM SET((!plype}-

cal
1821255070)
MM_ADD(oca. 2, sLocal 3

MM SETWpIype)! aanzmzs;)
xLocal_2=_MM_ADD(xLocal 2, xLocal_3);

xLocal_1=_MM_ADD(xLocal_2, xLocal_1);
xLocal = MM_MUL(xLocal_1, xNPrimeofX);
xLocal = _MM_SUB(_MM_SET((fptype)1.0), xLocal);

_MM_STORE(OutputX, xLocal);
71 _mm_storel_pd(ROutputX[0], xLocal);
11 _mm_storeh_pd(&OutputX[1], xLocal);

for (¢ |<SIMD _WIDTH; i++) {
if (signl;

Outpuﬁxlvl = ((fptype)1.0 - OutputX{il);
}

}
}

void BIkSchisEqEuroNoDIv (fptype * OptionPrice, int numOptions,

otype " sptprice,

“option_price,
int num_options,
fptype “stkprice,
fotype “strike,
“rate,
fptype “volatiity,
fptype “time)
{
for (int = 0; i < num_options; i += NCO) {
/i Calling main funciion o calculate oplion value based on
Black & Sholes’
e
BIkSchisEqEuroNoDiv(&(option_pricel]), NCO, &(stkpriceil)
8(strikeli),
&(rateil), &(volatltyl), &(timef),
NULL*&(otypefi)". 0);
}

}

Using Ct with Legacy Application Build Environments

--
. .

Ct-based Parallel Data Types

Physics, Image, 4.._
ideo, Signal C++

Processing, ... : 015 5
vy 0/0|0|6 6| @
\ 0 1o . n
C 0|0 7
C/C++ O
. /\
libs (— P
M| C/C++
ol Compiler Scalable, Adaptive
r . ' Performance
Ct
Runtime \(intel)’ \(intel)’
— Core'2 coeed

Duo Quad

Language Vehicle for Parallel Programming Systems Research

Ct Api
- Nested Data Parallelism
- Deterministic Task Parallelism

Deterministic parallel programming

Fine grained concurrency and synch
Dynamic compilation for DP

High-performance memory management

Forward-scaling binaries for SSE2/3/4/x, *NI

Parallel application library development

Performance tools for Future Architectures

Ct: Dynamic Compilation + Virtual Machine

float src1[], src2[], dest[]; T

High-Level Optimizer

Low-Level Optimizer '
VIP Code Generator '
*NI

SSE SSEx

=) | TVEC<F32> a(src1), b(src2);
TVEC<F32>c=a+b;
TVEC<F32>d=c"* a;
d.copyOut(dest);

Viema

a
by

Ct Dynamic d
Engine

‘ Future Scheduler '

All Intel Platforms

Use Animation intel'

High-Level Optimizer

~20 optimizations (including classic opts)
Increase granularity of parallelism / decrease threading
overhead

Eliminate redundant computation
Reduce memory accesses / improve locality

<srci1> <src2> @
<src1> <src2> @ sum>
G =
<sum> > @ =

<res> <res> Update Qpaate

<srci1> <src2>

Low-Level Optimizer

- ~10 optimizations

- Eliminate redundant checks.

- Reorganize the data layout.

- Parallelize the data-parallel tasks on multi threads.
- SIMD-vectorize each thread.

parallelize)

simdize)

VIP (Virtual Intel Platform):
The ISA of Ct Virtual Machine

INEW
Eanguages;

1A32 \ 1A32 \ Intel64\ 1A32 \ Intel64\
Len o emx

VIP = Virtualized Intel SIMD ISA + A Subset of X86
Virtualized Intel SIMD ISA

1024 bit (32*32bit)

\/
unlimited number of vector registers

Virtualized vector

v1st Ja instructions
* mask

 cast/conversion
sqrtps vsqrtps ..vrsqrtlutps.. shuffle/swizzle
» gather/scather

VIP = Virtualized Intel SIMD ISA + A Subset of X86
Virtualized Intel SIMD ISA

Hints for code generators

* accuracy
vipVsqrtF32)
q;\\\\\\\ﬁ‘ 0.5ulp

4ulp
..vrsgrtlutps.. ..vrsqgrtlutps..
7 insts 11 insts
EEEN EEEEEEER EEEEEEEEEEEEEEEE
. D ™€ e

SSE SSEx *NI

VIP = Virtualized Intel SIMD ISA + A Subset of X86
Virtualized Intel SIMD ISA A Subset of X86

EEEEEEEEEEEEEEEEEEEEEEEEEE
Describe loop structures

Deal with nested vectors

Perform optimizations

EEEN EEEEEEER EEEEEEEEEEEEEEEE
g T PO F—
SSE SSEx *NI 1A32 Intel64

intel)

—— —— —— e
27

Application Kernels & Performance

77 114
O SSE mCt-1C O Ct-8C
36.3
29
15.5
124
10 77
I 4637 ' 5847
1.1 1 1 1.41.6
Black Binomial MonteCarlo Convolution Collision
Scholes Tree Detection

Approach 2: A Parallel Functional Language

® We are also working with an ISV on a compiler for
a parallel functional language

- Strict, but not call by value for implicit parallelism (maybe
with lightweight annotations)

- Arrays and array comprehensions for data parallelism
- Effects system to contain impure features
- Atomic for state updates

Who is Team CLARA @ Intel?

® We comprise a team of about 23 researchers in the US and
China working on:

- A bridging model: Ct
- A parallel language implementation infrastructure: Pillar

- A proposed long term solution: a new functional language that
features implicit parallelism, dependent typing, and an effects type
system

® We have diverse technical backgrounds
- Java, C/C++, Fortran/F9x, Tcl/TK, SML compilers and runtimes;
biotech, graphics, physics, image, and video applications
® We are interested in supporting work in the areas I've
identified

- E.g. we have been driving DAMP in its first two years (please
attend DAMP next year :))

intel)

Summary

® Ct 1.0 source and examples will be “available” to
collaborators and the curious under reasonable

licensing (e.g. non-commercial use for academia)
January 2008

®* Next step: Full applications

* In the meantime, many-core architectures present
a unique opportunity to language designers:

- The combination of software engineering methodologies
and requirements and parallel computing constraints
seems tailor-made for the FP community

® Whitepaper, app notes at
www.intel.com/go/terascale

