
BS better with FP
...in three acts

Mieszko Lis
Ravi Nanavati
Bluespec, Inc.

Haskell’s Adventures in the Real World

Peddling FP under the covers

Compiling FP into hardware

Outline

Act I

Haskell’s Adventures
in the Real World

Bluespec, Inc.
 1yr+ VC-funded startup
 ~20 employees, ~10 engineers
 technology developed at MIT and Sandburst

Chip design tool (details later)
Code size
 compiler: 61k lines Haskell + 109k lines C

 (C mostly in BDD library)
 RTS/Libs: 8k lines BS, 1.2k lines Verilog,

12.5k lines C

Background

Benefits of Haskell
Quick prototyping
 optimize later when required

Type system allows safe changes and
refactoring
Pattern matching permits concise code
Automatic memory management
 so good, nobody notices

Monads clear the mind (and the sinuses)

one (Haskell-trained) intern added
full SV assertions support in a summer

Business perspective
Hiring Haskell programmers
 the pool is very small
 but smart (non-Haskell) people learn quickly
 ramp-up cost dominated by deciphering code

and articulating hidden assumptions anyway
 but businesses need to plan for this

Inexpensive outsourcing harder
 training is an issue

Scarcity of Haskell tools adds risk
 de facto GHC dependency
 free software license helps

Sins

Big positional data structs
Good
data Maybe a = Just a | Nothing

Bad
data Pkg = Pkg String String Foo Int Integer

 [Int] Bar ...

Deadly
-- some thousand lines later or in another file...

frobble (Pkg _ s f _ z ys b ...) = ...

 especially with easy-to-type variable names

Same with functions of many arguments

Deeply nested patterns
Obvious
fromBE (If e1 e2 e3) = ...

fromBE (And e1 e2) = ...

Readable?
collEQs (IAps (ICon _ (ICPrim _ PrimBAnd)) _
[e1, e2]) = ...

Encrypted
vsUniv (ICon i (ICValue { iValDef = IAps (ICon _
(ICPrim _ PrimRange)) _ [ICon _ (ICInt { iVal
= IntLit { ilValue = lo } }), ICon _ (ICInt
{ iVal = IntLit { ilValue = hi } }), _] }))
= ...

Misguided “cleverness”
“I bet I can do it with concatMap, fold,
and scanr...”
Long dotted chains of list functions
magic = magicfold . map snd . G.toVAList .

 addMissing . foldl G.addEdge G.empty .

 map (\(a,b) -> (a,b,()))

magicfold [] = []

magicfold xs = foldl1 intersect xs

Not limited to Haskell
while(*s++=*t++);

Rewrite instead of reuse
Foo.hs, line 432...
fst3 (x, _, _) = x

snd3 (_, y, _) = y

thd (_, _, z) = z

Bar.hs, line 1207...
get_1st (x, _, _) = x

get_2nd (_, y, _) = y

get_3rd (_, _, z) = z

Temptation remains high
 searching slower than rewriting

Annoyances

Creeping monadery
“Central repository” paradigm
 flags
 name supply
 symbol table
 rename an ID across the whole program

Foreign calls (e.g., external libraries)
 BDD was monadic; now it’s foreign and in IO
 ...and once in IO, there is no escape

I/O during long computation (warnings)
Soon IO has crept in everywhere!

Laziness and debugging
Everyone wants a gdb
 examine/change a “universe” snapshot
 for debugging
 for deciphering mysterious code
 laziness makes it hard!

Laziness not as beneficial as expected
 need to write out intermediate files
 need to force thunks to limit heap leaks
 need to attribute runtime to specific stages

Testing/counting data tags
Pattern-matching filters for one tag; what
if you want two?
data T a b ... = T0 | T1 a | T2 b | ...

fribble x | isT0 x || isT1 x = ...

 derive isT0, isT1 automatically

Class Enum enumerates the values of T;
what if you want to enumerate the tags?
let tagNames = ["foo", "bar", "quux", ...]

 name = tagNames !! tagOf x

 derive tagOf automatically

Learning Haskell
More realistic examples in books
 the real world lives in IO
 the real world is not an interpreter

Monads considered confusing
No “good programming style” guide
Easier to write code than to trace code
How useful is Haskell to one’s career?

Act II

Peddling FP
under the covers

Tool and market
For designing chips (ASICs, FPGAs, ...)
 currently low-level with Verilog or VHDL
 chip complexity rising (millions of gates)

For chip designers, verification
engineers, system architects
 ASICs have huge NREs ($500K–$1M)
 mistakes (respins) cost another NRE
 tools run into millions of $$$ per team,

form a significant fraction of a company’s
budget (e.g., ~10%)

 tools tend to run on UNIX (Solaris, Linux)

Bluespec Classic:
a Haskell-based HDL
package Shift(shift) where

import List

sstep :: Bit m -> Bit n -> Nat -> Bit n

sstep s x i when s[i:i] == 1 = x << (1 << i)

sstep s x i = x

shift :: Bit m -> Bit n -> Bit n

shift s x = foldl (sstep s) x

 (map fromInteger

 (upto 0 ((valueOf m) - 1)))

Selling BS Classic
Unfamiliar syntax a significant barrier
 even in marketing slides
 even ()s in function calls are different!

Many fronts in adoption war
 new hardware design methodology
 new unfamiliar syntax
 new type system
 new purely functional thinking
 new FP concepts (map, fold, monads)

Adapt an existing HDL
Map matching concepts
 expressions, bit vectors, functions, modules

Extend where straightforward
 higher-order functions, first-class objects,

polymorphism

Standardize where possible
 tagged unions, pattern matching (SV 3.1a)

Desugar where required
 imperative assignments, loops

Bluespec SystemVerilog:
FP with Verilog Syntax

function Bit#(n) sstep(Bit#(m) s, Bit#(n) x, Nat i);
 if(s[i] == 1)
 return(x << (1 << i));
 else
 return x;
endfunction

function Bit#(n) shift(Bit#(m) s, Bit#(n) x);
 return(foldl((sstep(s)),
 x,
 (map(fromInteger,
 upto(0, valueof(m) - 1)))));
endfunction

Bluespec SystemVerilog:
Imperative circuit construction
function Bit#(n) shift(Bit#(m) s, Bit#(n) x);

 Integer max = valueof(m);

 Bit#(n) xA [max+1];

 xA[0] = x;

 for (Integer j = 0; j < max; j = j + 1)

 if (s[fromInteger(j)] == 1)

 xA[j+1] = xA[j] << (1 << fromInteger(j));

 else

 xA[j+1] = xA[j];

 return xA[max];

endfunction

Teaching BSV
Limited training time (2-4 days typical)
Audience: hardware designers
 little or no FP background
 wires and registers, not abstractions
 conservative (remember cost of mistakes?)

Format: lectures interspersed with labs
Need to communicate basics
 or else evaluation project might be hard

Want to show full range of features
 or else benefits not perceived and no sale

Teaching conclusions

Functional features are advanced
 Get in the way of communicating basics

Strict typing seen as restrictive
 bit vs. Bool
 bit-width constraints
 structures vs. bit representations

Standards less relevant when teaching
 damn the torpedoes and teach the sugar

Key challenge: build intuition about
generated hardware

Act III

Compiling FP
into hardware

Implementing BSV:
two-level compilation

Level 2 Synthesis
• Scheduling
• Control logic generation
• Object code generation

Level 1 Elaboration
• Desugaring
• Type-checking
• Massive partial evaluation and static elaboration

BSV source program

Term Rewriting System
(rules and actions)

Object code
(Verilog RTL or C)

For historical reasons, the level one evaluator is lazy

Is this still a good idea as the language becomes
more imperative?

Laziness is hard work
Performance is a challenge
 graph reduction required to avoid

duplicating work

Non-strict primitives (if, and, or)
require careful handling
 symmetric short-circuiting
 undetermined values must be propagated

correctly

Error messages can be confusing
 “Compile-time expression did not evaluate”

Being lazy pays off
Consider: let z = x + y
Is this:
 a static constant?
 a fixed incrementer?
 a full adder?

A lazy evaluator does not care!
 evaluates what it can
 defers (or suspends) what it can't

User benefit: can move freely between
static and dynamic code

Using FP not at all tragic :)
 makes a small team powerful and agile
 power can easily be abused
 does not cure common engineering ills

Teaching FP quickly is a challenge
 especially new thinking on multiple fronts
 most professionals averse to change

FP techniques apply in new contexts
 good for your mental toolbox

Conclusions

The End

