Hack for HipHop

Julien Verlaguet (Facebook)

HipHop Team
What is PHP good at?

• PHP features:
 – Very fast installation time
 – A lot of libraries
 – Easy to learn
 – Scales well (avoids concurrency problems)

• But do we really care?
PHP: a FAST feedback loop
PHP: the challenges at scale

• Performance (runtime):
 – At this scale, 1% matters!
 – Hard to optimize

• Development:
 – Refactoring is difficult
 – Bugs are caught at runtime
 – Tooling is primitive
Scaling PHP runtime: HipHop

- PHP
 - Interpreter (Sandboxes)
 - Compiler C++ (Production)
Scaling PHP runtime: HHVM
Scaling PHP development: Hack

- HACK
- PHP
- JIT Compiler (HHVM)
HACK
(or Hack for HipHop)
Hack

• A **statically typed** language for HHVM
• Compatible with PHP:
 – Interoperates with no overhead
 – Same representation at runtime
• Evolved from PHP:
 – If you know PHP, you know Hack!
• Designed for **incremental adoption**:
 – Gradual typing
Hack Type System

• What must be annotated?
 – Class members
 – Function parameters
 – Return types

• What is inferred?
 – All the rest

• Annotating is an incremental process
Hack Types

• Nullable: ?int, ?MyClassName
• Tuples: (int, bool, X)
• Closures: (function(int): int)
• Collections: Vector<int>, Map<string, int>
• Generics: A<T>, foo<T>(T $x): T
• Constraints: foo<T as A>(T $x): T
• Type aliasing: [new]type t = ...
• Extensible records: shape(‘x’ => int)
DEM0

Snake Oil 2.0
HACK INTERNALS
Working at scale: Hack

- We knew we wanted an IDE from day one
- Big code base
- The solution, a server:
 - The server type-checks all the files
 - Keeps track of the dependencies
 - Recomputes types when something changed
Working at scale: The Constraints

- Auto-complete requires very low latency
- Users use version control (e.g., switching between branches)
- We must use a reasonable amount of RAM
- We must have a reasonable initialization time
- Must be **stable**
Hack is written in Ocaml!

• OCaml was a good choice:
 – Ideal for symbolic computation
 – Excellent performance
 – Can be compiled to JS
 – Interoperates well with C

• The challenge:
 – The runtime doesn’t support multicore
Hack architecture

- MASTER
- Worker1
- ...
- WorkerN
- SHARED HEAP

C

Arrows indicate communication between the components.
OCaml at Scale

- IPC:
 - Pipes, sockets etc ...
 - Caching layers to avoid deserialization cost
 - Carefully crafted lock free data structures (C code)

- Garbage collection:
 - Workers keep a small heap
 - Shared memory is compacted by the master

- OCaml makes you think hard about shared objects:
 - And that’s a good thing! ;-)
Questions?