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Outline 

�  What is probabilistic programming? 
�  History 
�  Our Figaro language 
�  Examples 



�  Suppose you have some information 
�  E.g., Brian ate pizza last night 

�  You want to answer some questions based on this information 
�  Is Brian a student? 
�  Is Brian a programmer? 

�  There is uncertainty in the answers 
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The Problem 



�  Create a joint probability distribution over the variables 
�  P(Pizza, programmer, student) 
�  Either directly or by learning it from data 

�  Assert the evidence 
�  Brian ate pizza 

�  Use probabilistic inference to get the answer 
�  P(student, programmer | pizza) 

4 

Probabilistic Modeling 



�  Probabilistic models in which variables are generated in order 
�  Later variables can depend on earlier variables 

�  Large number of variants, e.g. 
�  Bayesian networks 
�  Hidden Markov models 
�  Probabilistic context free grammars 
�  Kalman filters 
�  Probabilistic relational models 
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Generative Models 



Developing a new model requires implementing 
�  Representation 
�  Inference algorithm 
�  Learning algorithm 

�  All three are significant challenges 
�  Considered paper worthy 
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Building Generative Models 

Can	
  we	
  make	
  this	
  easier?	
  



�  Expressive representation language 
�  Capture wide variety of probabilistic models 

�  Built-in inference and learning algorithms 
�  Automatically apply to models written in the language 
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Probabilistic Programming Systems 



�  Ordinary functional language: an expression describes a 
computation that produces a value 

let student = true in 
let programmer = student in 
let pizza = student && programmer in 
(student, programmer, pizza) 

�  Functional probabilistic programming language: an expression 
describes a random computation that produces a value 

let student = flip(0.7) in 
let programmer = if (student) flip(0.2) else flip(0.1) in 
let pizza =  
   if (student && programmer) flip(0.9) else flip(0.3) in 
(student, programmer, pizza) 
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Functional Probabilistic Programming 



let student = flip(0.7) in 
let programmer = if (student) flip(0.2) else flip(0.1) in 
let pizza =  
   if (student && programmer) flip(0.9) else flip(0.3) in 
(student, programmer, pizza) 
 
�  Imagine running this program many times 
�  Each run generates a sample outcome 
�  In each run, each outcome has some probability of being 

generated 

�  The program defines a probability distribution over outcomes 
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Sampling Semantics 



�  Turing complete language + probabilistic primitives 
�  Naturally express wide range of probabilistic models 

�  A number of general purpose algorithms have been developed 
�  Structured variable elimination 
�  Markov chain Monte Carlo 
�  Importance sampling 
�  Factor graph compilation 
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Power of Functional Probabilistic Programming 



�  PPLs aim to “democratize” model building 
�  One should not need extensive training in ML or AI to build and code 

a model 
�  This means that a PPL should (broadly) satisfy two main goals: 
�  Usability 

�  Intuitive to use 
�  Common design patterns easily expressed 
�  Integration into other/existing applications 
�  Extensible language 
�  Extensible reasoning 

�  Power 
�  Ability to represent a wide variety of models, data, etc 
�  Powerful and practical inference techniques 

Making Probabilistic Programming Practical 
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�  With Daphne Koller and David McAllester, we first formulated 
the idea of probabilistic programming 

�  Lisp + flip 

�  Convoluted inference algorithm 
�  Later found to be buggy 
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History | KMP 97 



�  Representation 
�  First practical probabilistic programming language 
�  OCaml like syntax 
�  Implemented in Ocaml 

�  Inference 
�  Exact inference using structured variable elimination 
�  Later implemented intelligent importance sampling 

�  Limitations 
�  Hard to integrate with applications and data 
�  No continuous variables 
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History | IBAL (2000-2007) 



�  Representation 
�  Embedded DSL in Scala 
�  Allows distributions over any data type 
�  Highly expressive constraint system also allows it to express non-

generative models 

�  Inference 
�  Extensible library of inference algorithms 
�  Contains many of the most popular probabilistic inference 

algorithms, generalized to probabilistic programs 
�  E.g., variable elimination, Metropolis-Hastings, particle filtering 

�  New version to be released shortly 
�  Parameter learning 
�  Decision making 
�  Improved algorithms 
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History | Figaro (2009-Present) 



Goals of the Figaro Language 

�  Implement a PPL in a widely-used language 
�  Scala is widely-used 
�  Scala interoperability with Java also gives Figaro access to an even 

larger library 
�  Provide a language to describe models with interacting 

components 
�  Object-oriented 

�  Provide a means to expressed directed and undirected models 
with general constraints 
�  Functional 

�  Extensibility and reuse of inference algorithms 
�  Object-oriented, traits 

�  Using Scala helps achieve all of these goals! 
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�  Element[T] is class of probabilistic models over type T 

�  Atomic elements 
Constant[T], Flip, Uniform, Geometric 

�  Compound elements built out of other elements 
If(Flip(0.8), Constant(0.5), Uniform(0,1)) 
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Basic Figaro Concepts 



�  Constant[T] is the monadic unit 

�  Chain[T,U] implements monadic bind 
�  Use an Element[T] to generate T 
�  Apply a function to the T to generate an Element[U] 
�  Generate a U from the Element[U]  

Chain(Uniform(0,1), (d: Double) => Normal(d, 0.5)) 

�  Apply[T,U] implements monadic fmap 
Apply(Uniform(0,1), (d: Double) => d * 2) 
 
�  Most Figaro compound elements implemented using monad 
�  E.g., If 
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The Probability Monad 



�  Any Element[T] can have conditions and constraints 

�  Condition: function from T to Boolean 
�  Specifies a property that must be satisfied for a value to have 

positive probability 

�  Constraint: function from T to Double 
�  Weights probability of value 

�  Two purposes 
�  Asserting evidence 
�  Specifying new kinds of models including undirected models 
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Conditions and Constraints 
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Example 1: Probabilistic Processes on Graphs 

�  Google’s PageRank is a model of a probabilistic process on a 
graph 
�  Directed edge from page A to page B if A links to B 

�  Consider a random walk starting at any point in the graph 
�  What is the probability a node will be reached in n steps? 

 



�  Start by defining some data structures for a webpage graph 
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Random Walk in Figaro 

class Edge(from: Int, to: Int) 
 
class Node(ID: int, edges: Set[Edge]) 
 
class Graph(nodes: Set[Nodes]) { 
  def get(id: Int) = // return Node with ID == id 
} 
 
// function that randomly builds a graph given some params  
def graphGenProcess(params*): Element[Graph] 
 
 �  Define some parameters of the random walk 

val numSteps: Element[Int] = Constant(10)  
val inputGraph: Element[Graph] = graphGenProcess(…) 
val startNode: Element[Int] = Uniform(inputGraph.nodes) 
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Random Walk in Figaro 

// randomly move forward from a node 
def step(last: Int, g: Graph): Element[Int] =  
    Uniform(g(last).edges.map(e => e.to)) 
 
val rWalk = Chain(inputGraph, numSteps, startNode, rFcn) 
 
def rFcn(g: Graph, remain: Int, n: Int): Element[List[Int]] = { 
  if (remain == 1) 
    Apply(step(n, g), (i: Int) => List(i)) 
  else { 
    val prev = rFcn(g, remain-1, n) 
    val curr = step(Apply(prev, (l: List[Int]) => l.head), g) 
    Apply(curr, prev, (i: Int, l: List[Int]) => I :: l) 
  }  
} 
 



�  People smoke with probability 0.6 
�  Friends are 3 times as likely to have the same smoking habit 

than different 

�  Alice is friends with Bob, Bob is friends with Clara 
�  Alice smokes 
�  What is the probability that Clara smokes? 

 
 
Want a general solution that works for any friends network 

Example 2: Network Analysis 



Friends and Smokers | General Solution 

// A person smokes with probability 0.6 
class Person { val smokes = Flip(0.6) } 
 
// Friends are three times as likely to have the same 
// smoking habit than different 
def constraint(pair: (Boolean, Boolean)) =  
    if (pair._1 == pair._2) 3.0; else 1.0 
 
// Apply the constraints to all pairs of friends 
def applyConstraints(friends: List[Person]) { 
  for { (p1,p2) ← friends } { 
    (p1.smokes ^^ p2.smokes).addConstraint(constraint) 
  } 
} 
 



// Setting up the situation 
val alice, bob, clara = new Person 
val friends = List((alice, bob), (bob, clara)) 
applyConstraints(friends) 
alice.smokes.condition(true) 
 
// Running inference and querying 
val algorithm = VariableElimination(clara.smokes) 
algorithm.start() 
println(algorithm.probability(clara.smokes, true)) 
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Friends and Smokers | Specific Situation 



�  We observe an object (e.g. a vehicle on a road) 
�  We want to know what type of object it is 
�  We have some observations about it 

�  Inheritance hierarchies are a natural fit 
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Example 3: Hierarchical Reasoning 



�  Every element 
�  Has a name 
�  Belongs to an element collection 

�  These are implicit arguments 

�  A reference is a sequence of names 
�  e.g., vehicle1.size 

�  Starting with an element collection, you can get to the element 
associated with a reference 
�  Go through sequence of nested element collections 

�  There may be uncertainty in the identity of a reference 
�  E.g., you don’t know what vehicle1 is  
�  Figaro always resolves the reference to the actual element in any 

given world 
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Referring to Elements 



abstract class Vehicle extends ElementCollection { 
   val size: Element[Symbol] 
   val speed: Element[Int] 
} 
class Truck extends Vehicle { 
   val size = Select(0.25 -> 'medium, 0.75 -> 'big)("size", this) 
   val speed = Uniform(50, 60, 70)("speed", this) 
} 
class Pickup extends Truck { 
   override val speed = Uniform(70, 80)("speed", this) 
   override val size = Constant('medium)("size", this) 
 } 
class TwentyWheeler extends Truck … 
class Car extends Vehicle … 
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Defining the Class Hierarchy and Properties 



object Vehicle { 
    def generate(name: String): Element[Vehicle] = 
      Dist(0.6 -> Car.generate,  
             0.4 -> Truck.generate)(name, universe) 
  } 
object Truck { 
    def generate: Element[Vehicle] =  
      Dist(0.1 -> TwentyWheeler.generate,  
             0.3 -> Pickup.generate,  
             0.6 -> Constant[Vehicle](new Truck)) 
  } 
object Pickup { def generate … } 
object TwentyWheeler { def generate … } 
object Car { def generate … } 
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Defining a Distribution Over Objects 



val myVehicle = Vehicle.generate("v1") 
 
universe.assertEvidence(List(NamedEvidence("v1.size", 

Observation('medium)))) 
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Instantiating and Observing Evidence 



// Element representing the class name of the vehicle, 
// e.g. Truck  
val className = shortClassName(myVehicle) 
val isPickup = Apply(myVehicle, (v: Vehicle) => 

v.isInstanceOf[Pickup]) 
 
val alg = VariableElimination(isPickup, name) 
alg.start() 
 
println(alg.probability(isPickup, true)) 
// Print a list of class names with their probabilities 
println(alg.distribution(className).toList) 
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Querying The Model 



�  Free and open-source, available now at www.cra.com/figaro  
�  Tutorial available in release 

�  Version 2.0 release imminent  
�  Development will move to GitHub as of release 
https://github.com/p2t2  

�  Contact me apfeffer@cra.com or figaro@cra.com  
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Obtaining Figaro 


