
Func%onal	
 Probabilis%c	
 Programming	

CUFP	
 2013	

Avi	
 Pfeffer	

Charles	
 River	
 Analy2cs	

apfeffer@cra.com	

Outline

�  What is probabilistic programming?
�  History
�  Our Figaro language
�  Examples

�  Suppose you have some information
�  E.g., Brian ate pizza last night

�  You want to answer some questions based on this information
�  Is Brian a student?
�  Is Brian a programmer?

�  There is uncertainty in the answers

3

The Problem

�  Create a joint probability distribution over the variables
�  P(Pizza, programmer, student)
�  Either directly or by learning it from data

�  Assert the evidence
�  Brian ate pizza

�  Use probabilistic inference to get the answer
�  P(student, programmer | pizza)

4

Probabilistic Modeling

�  Probabilistic models in which variables are generated in order
�  Later variables can depend on earlier variables

�  Large number of variants, e.g.
�  Bayesian networks
�  Hidden Markov models
�  Probabilistic context free grammars
�  Kalman filters
�  Probabilistic relational models

5

Generative Models

Developing a new model requires implementing
�  Representation
�  Inference algorithm
�  Learning algorithm

�  All three are significant challenges
�  Considered paper worthy

6

Building Generative Models

Can	
 we	
 make	
 this	
 easier?	

�  Expressive representation language
�  Capture wide variety of probabilistic models

�  Built-in inference and learning algorithms
�  Automatically apply to models written in the language

7

Probabilistic Programming Systems

�  Ordinary functional language: an expression describes a
computation that produces a value

let student = true in
let programmer = student in
let pizza = student && programmer in
(student, programmer, pizza)

�  Functional probabilistic programming language: an expression
describes a random computation that produces a value

let student = flip(0.7) in
let programmer = if (student) flip(0.2) else flip(0.1) in
let pizza =
 if (student && programmer) flip(0.9) else flip(0.3) in
(student, programmer, pizza)

8

Functional Probabilistic Programming

let student = flip(0.7) in
let programmer = if (student) flip(0.2) else flip(0.1) in
let pizza =
 if (student && programmer) flip(0.9) else flip(0.3) in
(student, programmer, pizza)

�  Imagine running this program many times
�  Each run generates a sample outcome
�  In each run, each outcome has some probability of being

generated

�  The program defines a probability distribution over outcomes

9

Sampling Semantics

�  Turing complete language + probabilistic primitives
�  Naturally express wide range of probabilistic models

�  A number of general purpose algorithms have been developed
�  Structured variable elimination
�  Markov chain Monte Carlo
�  Importance sampling
�  Factor graph compilation

10

Power of Functional Probabilistic Programming

�  PPLs aim to “democratize” model building
�  One should not need extensive training in ML or AI to build and code

a model
�  This means that a PPL should (broadly) satisfy two main goals:
�  Usability

�  Intuitive to use
�  Common design patterns easily expressed
�  Integration into other/existing applications
�  Extensible language
�  Extensible reasoning

�  Power
�  Ability to represent a wide variety of models, data, etc
�  Powerful and practical inference techniques

Making Probabilistic Programming Practical

11

�  With Daphne Koller and David McAllester, we first formulated
the idea of probabilistic programming

�  Lisp + flip

�  Convoluted inference algorithm
�  Later found to be buggy

12

History | KMP 97

�  Representation
�  First practical probabilistic programming language
�  OCaml like syntax
�  Implemented in Ocaml

�  Inference
�  Exact inference using structured variable elimination
�  Later implemented intelligent importance sampling

�  Limitations
�  Hard to integrate with applications and data
�  No continuous variables

13

History | IBAL (2000-2007)

�  Representation
�  Embedded DSL in Scala
�  Allows distributions over any data type
�  Highly expressive constraint system also allows it to express non-

generative models

�  Inference
�  Extensible library of inference algorithms
�  Contains many of the most popular probabilistic inference

algorithms, generalized to probabilistic programs
�  E.g., variable elimination, Metropolis-Hastings, particle filtering

�  New version to be released shortly
�  Parameter learning
�  Decision making
�  Improved algorithms

14

History | Figaro (2009-Present)

Goals of the Figaro Language

�  Implement a PPL in a widely-used language
�  Scala is widely-used
�  Scala interoperability with Java also gives Figaro access to an even

larger library
�  Provide a language to describe models with interacting

components
�  Object-oriented

�  Provide a means to expressed directed and undirected models
with general constraints
�  Functional

�  Extensibility and reuse of inference algorithms
�  Object-oriented, traits

�  Using Scala helps achieve all of these goals!

15

�  Element[T] is class of probabilistic models over type T

�  Atomic elements
Constant[T], Flip, Uniform, Geometric

�  Compound elements built out of other elements
If(Flip(0.8), Constant(0.5), Uniform(0,1))

16

Basic Figaro Concepts

�  Constant[T] is the monadic unit

�  Chain[T,U] implements monadic bind
�  Use an Element[T] to generate T
�  Apply a function to the T to generate an Element[U]
�  Generate a U from the Element[U]

Chain(Uniform(0,1), (d: Double) => Normal(d, 0.5))

�  Apply[T,U] implements monadic fmap
Apply(Uniform(0,1), (d: Double) => d * 2)

�  Most Figaro compound elements implemented using monad
�  E.g., If

17

The Probability Monad

�  Any Element[T] can have conditions and constraints

�  Condition: function from T to Boolean
�  Specifies a property that must be satisfied for a value to have

positive probability

�  Constraint: function from T to Double
�  Weights probability of value

�  Two purposes
�  Asserting evidence
�  Specifying new kinds of models including undirected models

18

Conditions and Constraints

19

Example 1: Probabilistic Processes on Graphs

�  Google’s PageRank is a model of a probabilistic process on a
graph
�  Directed edge from page A to page B if A links to B

�  Consider a random walk starting at any point in the graph
�  What is the probability a node will be reached in n steps?

�  Start by defining some data structures for a webpage graph

20

Random Walk in Figaro

class Edge(from: Int, to: Int)

class Node(ID: int, edges: Set[Edge])

class Graph(nodes: Set[Nodes]) {
 def get(id: Int) = // return Node with ID == id
}

// function that randomly builds a graph given some params
def graphGenProcess(params*): Element[Graph]

 �  Define some parameters of the random walk

val numSteps: Element[Int] = Constant(10)
val inputGraph: Element[Graph] = graphGenProcess(…)
val startNode: Element[Int] = Uniform(inputGraph.nodes)

21

Random Walk in Figaro

// randomly move forward from a node
def step(last: Int, g: Graph): Element[Int] =
 Uniform(g(last).edges.map(e => e.to))

val rWalk = Chain(inputGraph, numSteps, startNode, rFcn)

def rFcn(g: Graph, remain: Int, n: Int): Element[List[Int]] = {
 if (remain == 1)
 Apply(step(n, g), (i: Int) => List(i))
 else {
 val prev = rFcn(g, remain-1, n)
 val curr = step(Apply(prev, (l: List[Int]) => l.head), g)
 Apply(curr, prev, (i: Int, l: List[Int]) => I :: l)
 }
}

�  People smoke with probability 0.6
�  Friends are 3 times as likely to have the same smoking habit

than different

�  Alice is friends with Bob, Bob is friends with Clara
�  Alice smokes
�  What is the probability that Clara smokes?

Want a general solution that works for any friends network

Example 2: Network Analysis

Friends and Smokers | General Solution

// A person smokes with probability 0.6
class Person { val smokes = Flip(0.6) }

// Friends are three times as likely to have the same
// smoking habit than different
def constraint(pair: (Boolean, Boolean)) =
 if (pair._1 == pair._2) 3.0; else 1.0

// Apply the constraints to all pairs of friends
def applyConstraints(friends: List[Person]) {
 for { (p1,p2) ← friends } {
 (p1.smokes ^^ p2.smokes).addConstraint(constraint)
 }
}

// Setting up the situation
val alice, bob, clara = new Person
val friends = List((alice, bob), (bob, clara))
applyConstraints(friends)
alice.smokes.condition(true)

// Running inference and querying
val algorithm = VariableElimination(clara.smokes)
algorithm.start()
println(algorithm.probability(clara.smokes, true))

24

Friends and Smokers | Specific Situation

�  We observe an object (e.g. a vehicle on a road)
�  We want to know what type of object it is
�  We have some observations about it

�  Inheritance hierarchies are a natural fit

25

Example 3: Hierarchical Reasoning

�  Every element
�  Has a name
�  Belongs to an element collection

�  These are implicit arguments

�  A reference is a sequence of names
�  e.g., vehicle1.size

�  Starting with an element collection, you can get to the element
associated with a reference
�  Go through sequence of nested element collections

�  There may be uncertainty in the identity of a reference
�  E.g., you don’t know what vehicle1 is
�  Figaro always resolves the reference to the actual element in any

given world

26

Referring to Elements

abstract class Vehicle extends ElementCollection {
 val size: Element[Symbol]
 val speed: Element[Int]
}
class Truck extends Vehicle {
 val size = Select(0.25 -> 'medium, 0.75 -> 'big)("size", this)
 val speed = Uniform(50, 60, 70)("speed", this)
}
class Pickup extends Truck {
 override val speed = Uniform(70, 80)("speed", this)
 override val size = Constant('medium)("size", this)
 }
class TwentyWheeler extends Truck …
class Car extends Vehicle …

27

Defining the Class Hierarchy and Properties

object Vehicle {
 def generate(name: String): Element[Vehicle] =
 Dist(0.6 -> Car.generate,
 0.4 -> Truck.generate)(name, universe)
 }
object Truck {
 def generate: Element[Vehicle] =
 Dist(0.1 -> TwentyWheeler.generate,
 0.3 -> Pickup.generate,
 0.6 -> Constant[Vehicle](new Truck))
 }
object Pickup { def generate … }
object TwentyWheeler { def generate … }
object Car { def generate … }

28

Defining a Distribution Over Objects

val myVehicle = Vehicle.generate("v1")

universe.assertEvidence(List(NamedEvidence("v1.size",

Observation('medium))))

29

Instantiating and Observing Evidence

// Element representing the class name of the vehicle,
// e.g. Truck
val className = shortClassName(myVehicle)
val isPickup = Apply(myVehicle, (v: Vehicle) =>

v.isInstanceOf[Pickup])

val alg = VariableElimination(isPickup, name)
alg.start()

println(alg.probability(isPickup, true))
// Print a list of class names with their probabilities
println(alg.distribution(className).toList)

30

Querying The Model

�  Free and open-source, available now at www.cra.com/figaro
�  Tutorial available in release

�  Version 2.0 release imminent
�  Development will move to GitHub as of release
https://github.com/p2t2

�  Contact me apfeffer@cra.com or figaro@cra.com

31

Obtaining Figaro

