
© 2013 Beckman Coulter, Inc. 

All rights reserved.

Medical Device Automation Using 

Message-Passing Concurrency in Scheme

Vishesh Panchal and Bob Burger

September 22, 2013

2013 CUFP Conference



Medical Device Automation Using Message-Passing Concurrency in Scheme

2

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• What does a molecular diagnostic device do?

• Overview of the software

– Scheme

– Erlang/OTP embedding

– Fault tolerance and error handling

– Domain-specific language for chemistry

– Web server

• Lessons learned

• Take away

Agenda



Medical Device Automation Using Message-Passing Concurrency in Scheme

3

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Detect the presence of specific strands of DNA/RNA in a sample

• Nucleic acid extraction & purification (EP) with magnetic beads, 

polymerase chain reaction (PCR) amplification, and fluorescent dye 

based quantification to detect specific viral loads

• Samples are excited using lasers as they undergo PCR which results in 

spectrographs

• Spectral decomposition of multiple fluorescent dye emissions across 

the PCR process determines the clinical result

• The device contains 19 boards with temperature, motor control, and 

sensors, two barcode readers, and a spectrometer

• To avoid cross-contamination it uses cartridge based chemistry and 

pipettors with disposable tips.

What does a molecular diagnostic device do?



Medical Device Automation Using Message-Passing Concurrency in Scheme

6

© 2013 Beckman Coulter, Inc. 

All rights reserved.



Medical Device Automation Using Message-Passing Concurrency in Scheme

7

© 2013 Beckman Coulter, Inc. 

All rights reserved.



Medical Device Automation Using Message-Passing Concurrency in Scheme

8

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Client/server architecture with a thin stateless client

• The client is written in C# and WPF.

• The instrument server is written in Scheme with Erlang and OTP 

embedding to leverage the pattern matching and message-passing 

concurrency of Erlang.

• The supervision structure isolates hardware failures and enables fault 

tolerance and recovery.

• A domain-specific language (DSL) provides a platform for scientists 

and other engineers to write assays to perform chemistry and other 

engineering experiments.

• A web server with support for HTTP, jQuery, and JSON enables 

debugging and visualization of logged data remotely.

Overview of the Software



Medical Device Automation Using Message-Passing Concurrency in Scheme

9

© 2013 Beckman Coulter, Inc. 

All rights reserved.

Programming languages should be designed not by piling feature on 

top of feature, but by removing the weaknesses and restrictions that 

make additional features appear necessary. Scheme demonstrates 

that a very small number of rules for forming expressions, with no 

restrictions on how they are composed, suffice to form a practical and 

efficient programming language that is flexible enough to support 

most of the major programming paradigms in use today.

–Revised6 Report on the Algorithmic Language Scheme, 2007

Scheme Overview



Medical Device Automation Using Message-Passing Concurrency in Scheme

10

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Dialect of Lisp invented by Steele & Sussman in 1975

• Exceptionally clear and simple syntax and semantics

• Few different ways to form expressions

• No restrictions on composing expressions

• First-class procedures and continuations

• Powerful, hygienic syntactic abstraction facility with special forms and pattern 

matching

• Dynamic, strong typing

• Automatic memory management

• Control: exceptions, threads, backtracking

• Arbitrary precision arithmetic with rational and complex numbers

Characteristics and Advantages of Scheme



Medical Device Automation Using Message-Passing Concurrency in Scheme

11

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Records

– Enables referencing structured data by field name instead of field index

– Allows for copying a record and changing particular fields

– Declaration: 

(define-record <input-event> 

input-state rack-count spu-offload-state is-processing-input?)

– Referencing:

(<input-event> event input-state)

– Copying:

(<input-event> copy event [input-state 'not-running])

Erlang Embedding in Scheme



Medical Device Automation Using Message-Passing Concurrency in Scheme

12

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Pattern Matching

– Enables matching on numbers, symbols, strings, lists, vectors, and records succinctly

– Allows for matching the value against a local variable and/or binding values to local 

variables in the pattern itself

– Example:

(lambda (event)

(let ([starting-rack-count 3])

(match event

[`(<input-event> [input-state not-running]

[rack-count ,@starting-rack-count]

,is-processing-input?)

(log is-processing-input?)

(send 'input-manager 'start)]

[,_ (void)])))

Erlang Embedding in Scheme



Medical Device Automation Using Message-Passing Concurrency in Scheme

13

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Processes, monitors and links

– One-shot continuations and software timer interrupts provide light-weight process 

implementation.

• Gen-Server

– Provides a functional way of mutating state by serializing requests through a single 

message queue

– Implements init, handle-call, handle-cast, handle-info, and terminate

– Currently, code-change is not supported

• Event Manager

– Responsible for logging all events and manages subscribers for events across the 

instrument server

• Supervisor

– Monitors other processes and is responsible for restarting them or shutting down 

safely in case of failures

Erlang/OTP Embedding in Scheme



Medical Device Automation Using Message-Passing Concurrency in Scheme

14

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• System decomposed into processes.

• Processes communicate with messages, not shared memory.

• Faults are isolated to the process that causes them.

• Processes can monitor and link to other processes to detect faults.

• Supervision trees manage fault monitoring and recovery.

• Time-outs mitigate deadlock.

• Error handling slogans from Erlang:

– Let some other process do the error recovery.

– If you can’t do what you want to do, die.

– Let it crash.

– Do not program defensively.

• Generic servers and event logging aid debugging.

Instrument Server Concurrency Model



Medical Device Automation Using Message-Passing Concurrency in Scheme

15

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Run all the actions described in the DSL in a confirm mode to estimate 

running time, suggest missing resources, and warn about time 

allotment errors.

• Queue the assay while accounting for resources used by each action.

• Schedule the assay.

• Run each action in its own process for fault tolerance.

• The DSL even exposes an option to ignore action failures, which is 

handy during test runs and debugging.

Assay Execution



Medical Device Automation Using Message-Passing Concurrency in Scheme

16

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Run all the actions described in the DSL in a confirm mode to estimate 

running time, suggest missing resources, and warn about time 

allotment errors.

• Queue the assay while accounting for resources used by each action.

• Schedule the assay. 

It's just like playing Tetris …

• Run each action in its own process for fault tolerance.

• The DSL even exposes an option to ignore action failures which is 

handy during test runs and debugging.

Assay Execution



Medical Device Automation Using Message-Passing Concurrency in Scheme

17

© 2013 Beckman Coulter, Inc. 

All rights reserved.

Therac 25

• “A radiation therapy device that overdosed patients with radiation. 

The realtime operating system (RTOS) for the device did not support a 

message passing scheme for threads. Therefore global variables were 

used instead. Insufficient protection of the global variables resulted in 

incorrect data being used during device operation. A second issue 

was an overflow condition on an 8 bit integer counter. These software 

coding errors resulted in overdosing patients with as much as 30 

times the prescribed dose.”

• In the instrument server, there is no shared, mutable state, so the first 

issue would not occur.

• Scheme uses exact, arbitrary precision arithmetic and raises an 

exception if a number does not fit in a fixed-sized integer, so the 

second issue would not occur.

Device Failure Examples



Medical Device Automation Using Message-Passing Concurrency in Scheme

18

© 2013 Beckman Coulter, Inc. 

All rights reserved.

Ariane 5

• “The very first launch of this rocket resulted in the destruction of the 

launcher with a loss of the payload. The cause was an overflow in a 

pair of redundant Inertial Reference Systems which determined the 

rocket’s attitude and position. The overflow was caused by converting 

a 64 bit floating point number to a 16 bit integer. The presence of a 

redundant system did not help, because the backup system 

implemented the same behavior.”

• In Scheme, the conversion of a floating-point number to an integer 

raises an exception if it does not fit in the target size.

Device Failure Examples



Medical Device Automation Using Message-Passing Concurrency in Scheme

19

© 2013 Beckman Coulter, Inc. 

All rights reserved.

Space Shuttle Simulator

• “During an abort procedure all four main shuttle computers crashed. 

Examination of the code identified a problem in the fuel management 

software where counters were not correctly reinitialized after the first 

of a series of fuel dumps were initiated. The result was that the code 

would jump to random sections of memory causing the computers to 

crash.”

• Scheme code cannot jump to random sections of memory.

• In the instrument server, counter management would likely be done 

in a gen-server, whose state-change behavior is specified functionally. 

If the code neglected to update the counter after the first of a series 

of fuel dumps, the gen-server would likely crash. The crash report 

would include the state and message at the time of the crash to help 

debug it.

Device Failure Examples



Medical Device Automation Using Message-Passing Concurrency in Scheme

20

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Non-initialized data

– In Scheme, variables are defined with their values. Mutations are handled with separate 

processes that manage state predictably (e.g., gen-servers).

• Out of bounds array access

– In Scheme, all memory accesses are safe, and a run-time exception is raised if an array 

is accessed beyond its bounds.

• Null pointer deference

– In Scheme, there are no NULL pointers, but it is possible to pass an unexpected datum 

to a procedure. When this occurs, a run-time exception is raised.

• Incorrect computation

– In Scheme, numeric operations return the mathematically correct result or raise an 

exception

Run-Time Error Causes and Their Mitigations



Medical Device Automation Using Message-Passing Concurrency in Scheme

21

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Concurrent access to shared data

– In the instrument server, there is no shared, mutable state.

• Illegal type conversions

– In Scheme, all type conversions preserve information or raise an exception.

• Dead code

– Code inspections identify dead code, and profile data from testing highlights code that 

has never been executed.

• Non-terminating loops

– In the instrument server, most operations involving gen-servers have a time-out. When 

the time-out occurs, an exception is raised, and the supervision hierarchy handles it.

Run-Time Error Causes and Their Mitigations



Medical Device Automation Using Message-Passing Concurrency in Scheme

23

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Assay developers

– Which reagents should be added, and in what order?

– What mixing and waste removal steps need to occur?

– Are incubations needed? When, how long, and how hot?

• Mechanical and electrical engineers

– Run module-level tests with custom logging

• Reliability engineers

– Run the whole system to determine long-term failure modes

• Systems engineers

– Develop and characterize pipetting, mixing, waste, and tip loading protocols at the 

motor level

– How do the operations fit together on the system timeline?

Need for a DSL



Medical Device Automation Using Message-Passing Concurrency in Scheme

24

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Extraction/purification language

– tip loading & unloading

– pipetting

– moving magnets

– incubating

– timing

• PCR language

– thermal cycling

– reading spectrographs

• Protocol language

– aspirating

– dispensing

– moving the tip

– waiting

– moving motors

– controlling shuck valves

DSL for Molecular Diagnostic Device



Medical Device Automation Using Message-Passing Concurrency in Scheme

25

© 2013 Beckman Coulter, Inc. 

All rights reserved.

1. Bake the enzyme for 1 minute at 37°C

2. Bake for 2 minutes at 60°C for the 

reverse transcription (RT) process to 

occur.

3. Bake for 1 minute at 95°C to activate the 

enzymes.

4. Thermal cycle the sample 40 times as 

follows:

a. Bake for 5 seconds at 95°C to 

denature the DNA.

b. Bake for 20 seconds at 60°C for the 

DNA to anneal. 

c. Take spectrographs at the midpoint
i. with a red laser for configured-time.
ii. with a green laser for 60 milliseconds.

DSL PCR Example



Medical Device Automation Using Message-Passing Concurrency in Scheme

26

© 2013 Beckman Coulter, Inc. 

All rights reserved.

(bake enzyme
(time 1 minute)
(temperature 37 C))

(bake RT
(time 2 minutes)
(temperature 60 C))

(bake enzyme-activate
(time 1 minute)
(temperature 95 C))

(cycle 40 times
(bake denature

(time 5 seconds)
(temperature 95 C))

(bake anneal
(time 20 seconds)
(temperature 60 C)
(read-spectrum

(wait-time 10 seconds)
(integration-times

(red configured-time)
(green 60 ms)))))

1. Bake the enzyme for 1 minute at 37°C

2. Bake for 2 minutes at 60°C for the 

reverse transcription (RT) process to 

occur.

3. Bake for 1 minute at 95°C to activate the 

enzymes.

4. Thermal cycle the sample 40 times as 

follows:

a. Bake for 5 seconds at 95°C to 

denature the DNA.

b. Bake for 20 seconds at 60°C for the 

DNA to anneal. 

c. Take spectrographs at the midpoint
i. with a red laser for its configured time
ii. with a green laser for 60 milliseconds

DSL PCR Example



Medical Device Automation Using Message-Passing Concurrency in Scheme

27

© 2013 Beckman Coulter, Inc. 

All rights reserved.

(define-syntax cycle
(syntax-rules (time times)
[(_ n times body ...)
(let ([count n])

(do ([i 1 (+ i 1)]) ((> i count)) body ...))]
[(_ n time body ...)
(cycle n times body ...)]

[(_ n body ...)
(cycle n times body ...)]))

Example usage:

(cycle 40 times
(move motor ‘xyz-x (position home))
(move motor ‘xyz-x (position (offset home 20 inches))))

Cycle Form Definition



Medical Device Automation Using Message-Passing Concurrency in Scheme

30

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Supports HTTP requests, jQuery, and JSON

• Provides an s-expression syntax to emit HTML code

• Enables rendering of pages using Scheme for logic and emit HTML 

code for rendering the information

• Used by software engineers for:

– Debugging devices remotely

– Rapidly prototyping UI’s since the web pages can call Scheme functions directly

– Provide developer-only functionality without having to make special adjustments in the 

actual UI

• Used by non-software engineers for:

– Pulling data from various prototype devices using JSON and pushing the information to 

other data collection systems. Example: validation tools for submitting data to the FDA

– Querying data by typing in SQL directly into the webpage without having to worry 

about connections and having to install separate software

Web Server



Medical Device Automation Using Message-Passing Concurrency in Scheme

31

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Message passing concurrency is not a magic bullet. Concurrency is 

still hard, gen-servers can deadlock, and race conditions have to be 

handled correctly.

• The supervision structure was built with a lot of trial and error since 

we are probably the first or among very few using the OTP ideology 

for device automation.

• Automated and unit testing frameworks had to be built up by us.

• DSL gives non-software folks a lot of power. Conversely, when the 

system is being stressed and problems are discovered, system-level 

debugging has to depend a lot on the software team, since they are 

not proficient in Scheme, same with testing groups.

Lessons Learned



Medical Device Automation Using Message-Passing Concurrency in Scheme

32

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Ramp-up time for new team members because of unique 

Scheme/Erlang language.

• IDE/debugging support. We don't miss it much since we have good 

logging, but it contributes to the slow ramp-up time for new team 

members.

• Hard to find support from the web community because of heavy 

customization.

• Problems with quality metrics like defect density. Scheme is very terse, 

so the defect density seems higher than for other languages.

• Be prepared for more scrutiny from the FDA, since this is different 

from the usual C/C++ or C# code bases, and we use other open-

source tools like Emacs, SQLite, git, etc.

Lessons Learned



Medical Device Automation Using Message-Passing Concurrency in Scheme

33

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• The instrument server uses message-passing concurrency to eliminate by 

design the race conditions and non-modularity of shared-state concurrency.

• Message-passing paradigm makes reasoning about concurrent processes 

easier.

• Fault isolation, the supervision tree, logging, and time-outs mitigate problems 

caused by non-determinism.

• Let-it-crash error handling philosophy leads to shorter code with fewer branch 

points and test cases.

• Strong typing and run-time checks provide cognizant failure instead of silent 

corruption.

• Mixing languages makes them more powerful and allows you to borrow the 

best bits of each one.

• DSL’s provide the ability for rapid prototyping and experimenting for non-

software developers.

Take Away



Medical Device Automation Using Message-Passing Concurrency in Scheme

34

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Jay Abraham (The MathWorks) and Paul Jones and Raoul Jetley

(FDA/CDRH). Sound Verification Techniques for Developing High-

Integrity Medical Device Software, 2009.

• Joe Armstrong. Making reliable distributed systems in the presence of 

software errors, 2003.

• Simon Peyton-Jones. Beautiful concurrency, Beautiful Code, 2007.

References



Medical Device Automation Using Message-Passing Concurrency in Scheme

35

© 2013 Beckman Coulter, Inc. 

All rights reserved.

• Vishesh Panchal

Senior Software Engineer, Interactive Intelligence, Inc.

visheshpanchal@gmail.com | 574.302.6233

• Bob Burger

Senior Staff Software Engineer, Beckman Coulter, Inc.

rgburger@beckman.com | 317.808.4204

Contact Information

mailto:visheshpanchal@gmail.com
mailto:rgburger@beckman.com

