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Company Goals 
•  Increase Haskell Adoption 
•  Make Haskell More Accessible 
•  Offer Commercial Grade Tools and Support 
•  Simplify Haskell Deployment 
•  Support the Haskell Community 
•  Leverage what the Community Offers 



FP Haskell Center 
•  Web Front End 

–  No Struggle Setup 
–  Access to Help 
–  Easy to Integrate with Haskell 

•  Haskell Back End 
–  Project Management 
–  Provide Developer Feedback 
–  Build System 
–  Cloud Base Execution and Deployment 

•  Cloud allows faster product evoluton 
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UI 
•  UI Details 

– Backend Implemented in Yesod 
– Lots of Library Support (conduits, etc) 
– UI Uses Javascript (using Fay) 
– Heavy lifting done in Backend 

•  Very few Issues surfaced 



Product Goals 
•  Web Access (initially) 
•  Live Feedback To Developer 
•  Point and Click Build Process 
•  Simple Project Management 
•  Access to Source Repositories 
•  Integrated Help and Documentation 



Challenges 
•  Javascript Coding Issues 
•  Stable set of libraries 
•  Compiler Integration (feedback and errors) 
•  Integrating with git 
•  Running in the cloud 
•  Deploying Applications 
•  Billing system integration 



Stability Issues 
•  Fay - Javascript 

– Eliminated most Javascript issues 
– Allowed us to focus on features not bugs 

•  Create Stackage 
– Managed by Authors 
– Packages must be version compatible 
–  Libraries are vetted, and tested 
– Commercial Support for Customers 



Code Analysis 
•  Integrating GHC Via Library 

– Access to the Abstract SyntaxTree 
– Report Errors 
– Map Source Location to AST 
–  Locate where Identifiers are Defined 
– Get Details about Types and Identifiers 
– Support Auto-complete 

•  Do the same for HLint 



Beyond Errors (Future) 
•  Once You have the Compiler Front End 

– Do Syntax Analysis 
– Recommend Code Improvements 
– Track Code Execution 
–  Implement Debugging 
– Add Profiling Information 
–  Improve Error Reporting 
– Understand performance issues 



Responsiveness and Stability 
•  Challenges 

– Do code analysis 
– Provide Lots of Live User Feedback 
– But Make the UI “Snappy” 

•  Solution 
– Separate the Web Front End and 
– Code Analysis Engines 
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Running in the Cloud 
•  Use LXC to create Isolation Containers 

– Each container is a mini machine 
–  Includes a full runtime environment 
– Runs required system services 
– Provides ephemeral storage 
– Containers can run on shared systems 
– Share underlying resources to reduce footprint 

•  OS, Libraries, and System Services 



Containers Distributed as 
Needed •  Containers on dedicated and shared systems 



IDE Uses Isolation Containers 
•  Front End handles requests from IDE 
•  Initiates a User sandbox container 
•  Loads Environment from Persistent Storage 

–  Includes Active files 
–  Project Settings 
–  Previous State Settings 

•  User work is Saved to Persistent Storage (S3) 
 



Managing Projects 
•  Visual Representation of Projects 
•  Projects Stored in Git Repositories 
•  Contains Project Settings/Definition File 
•  Repo Access Through Haskell gitlib-2 

–  Haskell robustness 
–  Multiple backends 

•  Git C library backend 
•  GitHub C library backend 
•  IDE Local repository stored in S3 
•  Others? 



Building Projects 
•  IDE Code Generated by Backend Process 

–  Uses Active GHC Front End 
–  Generates Bytecode 
–  Runs Bytecode in GHC Frontend Container 
–  Exceptions leave IDE intact 

•  Deployment Build System Uses Cabal APIs 
–  Import existing cabal files 
–  Preprocess CPP Macros 
–  Build executables for deployment 
–  Generate licenses for deployment executables 



Deploying Projects 
•  Haskell Has No Standard Way To Deploy Apps 
•  We Constructed A Deployment System 

–  Compile Source to Executables 
•  Haskell Libraries Linked Statically 

–  Create Isolation Container 
–  Install FP Application Server 
–  Launch Instance (dedicated or shared) 
–  Load Executable 
–  Start Configuration Manager 
–  Use Keter and Chef to Keep Things Running 



Billing 
•  Billing Processor Provides SOAP APIs 

–  Haskell SOAP Library Not Complete 
–  Processor Supports gsoap 

•  Gsoap generates C++ from WSDL Files 
–  FFI Requires C Bindings 
–  Must generate Isomorphic mappings to C++ data 
–  Fortunately all Gsoap data delivered as strings 

•  Limitations in GHC, Cabal, Linux made hard 



Summary 
•  Haskell made development easier 

–  Fewer Errors 
–  Robust Code 

•  Our tools reduced our development effort 
–  Stackage for Compatible Libraries 
–  Integrated Code Analysis Tools 
–  Containers used everywhere for running code 
–  Code, Build and Deploy 

•  Haskell requires more commercial libraries 
–  Billing Engine That Only Talks SOAP 


