a
Q (FPComplete

Bringing Haskell to the World

www.fpcomplete.com

7

FPComplete
-

Experience Report

Building Haskell Development and Deployment tools

Gregg Lebovitz
Director, Product Management

FP Complete

Company Goals

* |Increase Haskell Adoption

 Make Haskell More Accessible

« Offer Commercial Grade Tools and Support
« Simplify Haskell Deployment

« Support the Haskell Community

* Leverage what the Community Offers

FP Haskell Center

« Web Front End

— No Struggle Setup
— Access to Help
— Easy to Integrate with Haskell

« Haskell Back End
— Project Management
— Provide Developer Feedback
— Build System
— Cloud Base Execution and Deployment

« Cloud allows faster product evoluton

Product Roadmap

FP School of FP Haskell Center™ FP Haskell Center™ Non
Haskell™ Cloud Cloud
Professional

& Academic
Personal

Deployment IDE

Sept. Oct. Q1
2013 2013 2014

* Ul Detalls
—Backend Implemented in Yesod
—Lots of Library Support (conduits, etc)
— Ul Uses Javascript (using Fay)
—Heavy lifting done in Backend

* Very few Issues surfaced

Product Goals

* Web Access (initially)

* Live Feedback To Developer

* Point and Click Build Process

« Simple Project Management

* Access to Source Repositories

* Integrated Help and Documentation

Challenges

« Javascript Coding Issues

» Stable set of libraries

« Compiler Integration (feedback and errors)
* Integrating with git

* Running in the cloud

* Deploying Applications

* Billing system integration

Stability Issues

* Fay - Javascript
— Eliminated most Javascript issues
— Allowed us to focus on features not bugs

» Create Stackage
— Managed by Authors
— Packages must be version compatible
— Libraries are vetted, and tested
— Commercial Support for Customers

Code Analysis

* Integrating GHC Via Library
— Access to the Abstract SyntaxTree
— Report Errors
— Map Source Location to AST
— Locate where |dentifiers are Defined
— Get Details about Types and Identifiers
— Support Auto-complete

Do the same for HLint

Beyond Errors (Future)

* Once You have the Compiler Front End
— Do Syntax Analysis
— Recommend Code Improvements
— Track Code Execution
— Implement Debugging
— Add Profiling Information
— Improve Error Reporting
— Understand performance issues

Responsiveness and Stability

* Challenges
— Do code analysis
— Provide Lots of Live User Feedback
— But Make the Ul “Snappy”

« Solution
— Separate the Web Front End and
— Code Analysis Engines

\ Separate Processes
Server

| Code Engine Compiler Frontend

Code Analysis ./.\’

User
. PEEEEN CHC AP
Session Hlint API .‘: ..\‘.

Code Analysis ./‘\.

User
. — GHC API —0 @
Session Hlint API .’: ..\’.

User Code Analysis ./.\’
Sece PR GHC AP s) 0‘/0 O\.
ession Hlint AP oo o'

Running in the Cloud

« Use LXC to create Isolation Containers
— Each container is a mini machine
— Includes a full runtime environment
— Runs required system services
— Provides ephemeral storage
— Containers can run on shared systems

— Share underlying resources to reduce footprint
* OS, Libraries, and System Services

Containers Distributed as

« Containers on dedicated and shared systems

Front end server 2
container

creation

container
access

Elastic load
balancer

Isolation host Isolation host Isolation host Isolation host

container 2 container 2

' i
1 1 1
1 1 1
1 1 '
1 1 1
container 1 1 1 container 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

Availability zone A Availability zone B

IDE Uses Isolation Containers

Front End handles requests from IDE
Initiates a User sandbox container

Loads Environment from Persistent Storage

— Includes Active files
— Project Settings
— Previous State Settings

User work is Saved to Persistent Storage (S3)

Managing Projects

Visual Representation of Projects
Projects Stored in Git Repositories

Contains Project Settings/Definition File

Repo Access Through Haskell gitlib-2
— Haskell robustness

— Multiple backends
» Git C library backend
» GitHub C library backend

» IDE Local repository stored in S3
» Others?

Building Projects

* IDE Code Generated by Backend Process
— Uses Active GHC Front End
— Generates Bytecode
— Runs Bytecode in GHC Frontend Container
— Exceptions leave IDE intact

* Deployment Build System Uses Cabal APls
— Import existing cabal files
— Preprocess CPP Macros
— Build executables for deployment
— Generate licenses for deployment executables

Deploying Projects

« Haskell Has No Standard Way To Deploy Apps

* We Constructed A Deployment System

— Compile Source to Executables
» Haskell Libraries Linked Statically

— Create Isolation Container

— Install FP Application Server

— Launch Instance (dedicated or shared)

— Load Executable

— Start Configuration Manager

— Use Keter and Chef to Keep Things Running

 Billing Processor Provides SOAP APIs
— Haskell SOAP Library Not Complete
— Processor Supports gsoap

« (Gsoap generates C++ from WSDL Files
— FFI Requires C Bindings
— Must generate Isomorphic mappings to C++ data
— Fortunately all Gsoap data delivered as strings

e Limitations in GHC, Cabal, Linux made hard

« Haskell made development easier
— Fewer Errors
— Robust Code

* Our tools reduced our development effort
— Stackage for Compatible Libraries
— Integrated Code Analysis Tools
— Containers used everywhere for running code
— Code, Build and Deploy

« Haskell requires more commercial libraries
— Billing Engine That Only Talks SOAP

