
Bringing Haskell to the World 
 
www.fpcomplete.com 



Experience Report 
Building Haskell Development and Deployment tools 

Gregg Lebovitz 
Director, Product Management 

FP Complete 



Company Goals 
•  Increase Haskell Adoption 
•  Make Haskell More Accessible 
•  Offer Commercial Grade Tools and Support 
•  Simplify Haskell Deployment 
•  Support the Haskell Community 
•  Leverage what the Community Offers 



FP Haskell Center 
•  Web Front End 

–  No Struggle Setup 
–  Access to Help 
–  Easy to Integrate with Haskell 

•  Haskell Back End 
–  Project Management 
–  Provide Developer Feedback 
–  Build System 
–  Cloud Base Execution and Deployment 

•  Cloud allows faster product evoluton 



FP School of 
Haskell™ 

FP Haskell Center™ Non 
Cloud 

FP Haskell Center™ 
Cloud 

Product Roadmap 

March 
2013 

Sept. 
2013 

Oct. 
2013 

Dec. 
2013 

Q1 
2014 

Professional 
& Academic 

Personal 
IDE Deployment 



UI 
•  UI Details 

– Backend Implemented in Yesod 
– Lots of Library Support (conduits, etc) 
– UI Uses Javascript (using Fay) 
– Heavy lifting done in Backend 

•  Very few Issues surfaced 



Product Goals 
•  Web Access (initially) 
•  Live Feedback To Developer 
•  Point and Click Build Process 
•  Simple Project Management 
•  Access to Source Repositories 
•  Integrated Help and Documentation 



Challenges 
•  Javascript Coding Issues 
•  Stable set of libraries 
•  Compiler Integration (feedback and errors) 
•  Integrating with git 
•  Running in the cloud 
•  Deploying Applications 
•  Billing system integration 



Stability Issues 
•  Fay - Javascript 

– Eliminated most Javascript issues 
– Allowed us to focus on features not bugs 

•  Create Stackage 
– Managed by Authors 
– Packages must be version compatible 
–  Libraries are vetted, and tested 
– Commercial Support for Customers 



Code Analysis 
•  Integrating GHC Via Library 

– Access to the Abstract SyntaxTree 
– Report Errors 
– Map Source Location to AST 
–  Locate where Identifiers are Defined 
– Get Details about Types and Identifiers 
– Support Auto-complete 

•  Do the same for HLint 



Beyond Errors (Future) 
•  Once You have the Compiler Front End 

– Do Syntax Analysis 
– Recommend Code Improvements 
– Track Code Execution 
–  Implement Debugging 
– Add Profiling Information 
–  Improve Error Reporting 
– Understand performance issues 



Responsiveness and Stability 
•  Challenges 

– Do code analysis 
– Provide Lots of Live User Feedback 
– But Make the UI “Snappy” 

•  Solution 
– Separate the Web Front End and 
– Code Analysis Engines 



Separate Processes 
Front End 

Server 

User 
Session 

User 
Session 

User 
Session 

Code Analysis 
GHC API 
Hlint API 

Code Analysis 
GHC API 
Hlint API 

Code Analysis 
GHC API 
Hlint API 

Code Engine Compiler Frontend 



Running in the Cloud 
•  Use LXC to create Isolation Containers 

– Each container is a mini machine 
–  Includes a full runtime environment 
– Runs required system services 
– Provides ephemeral storage 
– Containers can run on shared systems 
– Share underlying resources to reduce footprint 

•  OS, Libraries, and System Services 



Containers Distributed as 
Needed •  Containers on dedicated and shared systems 



IDE Uses Isolation Containers 
•  Front End handles requests from IDE 
•  Initiates a User sandbox container 
•  Loads Environment from Persistent Storage 

–  Includes Active files 
–  Project Settings 
–  Previous State Settings 

•  User work is Saved to Persistent Storage (S3) 
 



Managing Projects 
•  Visual Representation of Projects 
•  Projects Stored in Git Repositories 
•  Contains Project Settings/Definition File 
•  Repo Access Through Haskell gitlib-2 

–  Haskell robustness 
–  Multiple backends 

•  Git C library backend 
•  GitHub C library backend 
•  IDE Local repository stored in S3 
•  Others? 



Building Projects 
•  IDE Code Generated by Backend Process 

–  Uses Active GHC Front End 
–  Generates Bytecode 
–  Runs Bytecode in GHC Frontend Container 
–  Exceptions leave IDE intact 

•  Deployment Build System Uses Cabal APIs 
–  Import existing cabal files 
–  Preprocess CPP Macros 
–  Build executables for deployment 
–  Generate licenses for deployment executables 



Deploying Projects 
•  Haskell Has No Standard Way To Deploy Apps 
•  We Constructed A Deployment System 

–  Compile Source to Executables 
•  Haskell Libraries Linked Statically 

–  Create Isolation Container 
–  Install FP Application Server 
–  Launch Instance (dedicated or shared) 
–  Load Executable 
–  Start Configuration Manager 
–  Use Keter and Chef to Keep Things Running 



Billing 
•  Billing Processor Provides SOAP APIs 

–  Haskell SOAP Library Not Complete 
–  Processor Supports gsoap 

•  Gsoap generates C++ from WSDL Files 
–  FFI Requires C Bindings 
–  Must generate Isomorphic mappings to C++ data 
–  Fortunately all Gsoap data delivered as strings 

•  Limitations in GHC, Cabal, Linux made hard 



Summary 
•  Haskell made development easier 

–  Fewer Errors 
–  Robust Code 

•  Our tools reduced our development effort 
–  Stackage for Compatible Libraries 
–  Integrated Code Analysis Tools 
–  Containers used everywhere for running code 
–  Code, Build and Deploy 

•  Haskell requires more commercial libraries 
–  Billing Engine That Only Talks SOAP 


