End to End Reactive
Programming at Netflix

NETFLIX




Who am I?

e Technical Lead for all the Netflix Ul’s

e 12 yearsin the industry, formerly worked at
GE and Microsoft

e 4 years of experience building systems with
Functional Reactive Programming



Rewind Two Years

Netflix had decided to change our client-server
interaction model.




Before

All Ul’'s used the same endpoints.




Problems

* Tight coupling between Middle Tier and Ul
teams

* One-sized fits all messages
 |nefficient call patterns



The Plan

Give Ul developers the ability to create
endpoints specialized for their devices.

http://netflix.com/wii

http://netflix.com/xbox




Some Ul developers saw it this way...

Give Force Ul developers the-ability-to create
endpoints specialized for their devices.

http://netflix.com/wii

http://netflix.com/xbox

http://netflix.com/mobile



Two Developer Personas




Challenge

How to turn Ul developers into effective cloud
developers?



Comforts for Ul Developers

* Groovy
* OO API

* Reactive API



Reactive is Not Enough

e Parallelism + Aggregation == Contention
 Most Yl developers can’t be trusted with locks




How to make parallel programming safe for Ul
developers?



Rewind Another 2 Years

=" Microsoft



Erik Meijer



“What’s the difference between a database
qguery...




...and a mouse drag event?”




“Nothing. They are both collections.”



New JS Closure syntax

ES5

var add = function(x,y) { return x + vy; }

ES6
var add = (x,y) => x + vy



Query for well-rated Movies

var getTopRatedFilms = user =>
user.videolLists.
map (videoLlist =>
videoList.videos.
filter (video => video.rating === 5.0)).
flatten () ;

getTopRatedFilms (user) .
forEach (film => console.log(film));



Mouse Drag Event

var getElementDrags = elmt =>
elmt.mouseDowns.
map (mouseDown =>
document .mouseMoves.
£ilter takeUntil (document.mouseUps)) .
flatten () ;

getElementDrags (1image) .

forEach (pos => image.position = pos);



Design Patterns

Elements of Reusable
Object-Oriented

Erich Gam
Richard

>
@)
O
w
2
S
Z
=
=
)
<
)
=
)
w
=
O
zZ
>
~
)
s
Z
A
Z
A
w
e
w




lterable<T> Observable<T>

lterator<T> iterator() Disposable subscribe(Observer<T>)

lterator<T>: Disposable Observer<T>

T next() void onNext(T)

boolean hasNext() void onCompleted()

throw new Throwable() void onError(Throwable)
Disposable

void dispose() void dispose()



Observable and Iterable are dual!



Reactive Extensions

 Combinator Library for Observable type
* Open Source

e Ported to
—C
— C#/VB.Net

— Javascript
— Java (Netflix)




Observable Monad

* Vector version of Continuation monad
* Null propagation semantics of Maybe monad
* Error propagation semantics of Either monad



Observable Monad (cont.)

Produced and consumed with side-effects
Composed functionally

Cancellation semantics

Can be synchronous or asynchronous



Observable Monad (cont.)

Cleanly abstract over IO streams and Ul events.




Map over Observable

var map = (observable, func) =>
{
forEach: observer => {
var subscription =
observable.forEach ({
onNext: i1tem => observer.onNext (func(item)),
onkrror: error => observer.onError (error),
onCompleted: () => observer.onCompleted()

b)) s

return subscription;

} s



Three Types of Composition

Observable

var map = (obsewvable, func) =>

{

Observer
forEach: observer => {

var subscription =
observable.forEach ({
onNext: item => observer.onNext (func(item)),
onError: error => observer.onError (error),
onCompleted: () => observer.onCompleted ()

b)) s

return subscription;
} Subscription

} s



2 bservable<T>

One reactive type for cloud and Ul developers.



Social Notifications on Middle Tier

Observable.join (
soclialService.getFriends (user),
messageService.

getNotifications() .
filter (notification =>
notification.video.isAvailable),

friend => friend.id, // join key selector

notification => notification.friend.id, // join key selector

(friend, notification) =>
{
id: notification.id,
name: notification.video.name,
message: notification.message,
friend: { name: friend.name, 1id: friend.id }



Search Auto-complete on the Ul

var searchResultSets =
keyPresses.
throttle (20) .
flatMap (search =>
getSearchResults (search) .

takeUntil (keyPresses)) ;

searchResultSets.forEach (
resultSet => listBox.setItems (resultSet));

o

Prison Break
Peep Show

Pirates of the Caribbean: The Curse
of the Black Pearl




Data Tier

Middle Tier

Ul

Read from InputStream

Composition (map/filter)

Write to OuputStream

om position ’ map | ”;

omposmon mapter
omposmon mapter

. Impure
i Pure



Wins

Got Rx Open-sourced

Ported Observable combinators to Java
(RxJava)

Currently using FRP on 3 different platforms
Large sections of Ul now written in FRP-style

Growing awareness of and competency in
functional programming in general



Challenges

* Evangelism
* Training
* Performance



Challenges: Evangelism

e Don’t assume best technical solution will win
* Practice public speaking
 Focus on the soft skills



Challenges: Training/Hiring

Be available for support 24/7

Teach at the same time
— Functional Programming,
— Vector Programming
— Reactive Programming

ook outside Ul teams for FP competence
bind/flatMap/concatMap/mapcat/mapMany
nteractive training exercises

Understanding where to apply FRP on the client




Challenges: Performance

Chunking for low-end devices
Best applied to less chatty event streams
Decomposition to reduce per-item cost

Type-unsafe flatMap easier to understand and
faster



Resources

e https://github.com/Reactive-Extensions/RxJS
* http://jhusain.github.io/learnrx/




Questions



